• Title/Summary/Keyword: Routing Planning

Search Result 120, Processing Time 0.031 seconds

Development of a Planning System for the Routing and Scheduling of Vehicles in Pickup and Delivery Services (수배송 서비스를 위한 운송계획 최적화 시스템 개발)

  • Choi, Ji-Young;Lee, Tae-Han;Lim, Jae-Min
    • IE interfaces
    • /
    • v.19 no.3
    • /
    • pp.202-213
    • /
    • 2006
  • In this paper, we develop a planning system for the routing and scheduling of vehicles in pickup and delivery service such as door-to-door parcel service. Efficient routing and scheduling of vehicles is very important in pickup and delivery service. The routing and scheduling problem is a variation of vehicle routing problem which has various realistic constraints. We develop a heuristic algorithm based on tabu search to solve the routing and scheduling problem. We develop a routing and scheduling system installed the algorithm as a planning engine. The system manage the basic data and uses GIS data to make a realistic route plan.

Connection/Bearer-Path Routing Technology (인터넷 트래픽 관리를 위한 연결/베어러-패스 라우팅 기술)

  • 신현철;장희선
    • Convergence Security Journal
    • /
    • v.2 no.2
    • /
    • pp.89-97
    • /
    • 2002
  • We use the call routing to interpret the number or name for routing address in multimedia internet. The routing address is used for connection setup. The traffic engineering consists of traffic management, capacity management and network planning. In this paper, in the traffic management function, the basic functions for call routing and connection/bearer-path routing will be presented.

  • PDF

A Study on the Optimal Routing Planning Algorithm for Rescue of Multiple Victims in Disaster Area (재난 지역 다수 조난자 구조를 위한 최적 경로 계획 알고리즘 연구)

  • Kim, Ki-Tae;Cho, Sung-Jin;Jeon, Geon-Wook
    • Journal of the Korea Safety Management & Science
    • /
    • v.12 no.2
    • /
    • pp.17-23
    • /
    • 2010
  • The large-scale disasters occur to unexpected accidents such as natural disasters(earthquake, typhoon, tsunami, etc.), and human-caused accidents(fire, collapse, terror etc.). Rescue teams perform rescue activities to save many lives in large-scale disaster area. The main purpose of this study is to compose a optimal routing planning for rescue of multiple victims in disaster area. A realistic routing planning with rescue limit time which considers rehabilitation and reconstruction will be suggested in this study. A mathematical programming model and a hybrid genetic algorithm will be suggested to minimize the total spending time. By comparing the result, the suggested algorithm gives a better solution than existing algorithms.

Simulated Annealing Based Vehicle Routing Planning for Freight Container Transportation (화물컨테이너 운송을 위한 시뮬레이티드 어닐링 기반의 차량경로계획)

  • Lee, Sang-Heon;Choi, Hae-Jung
    • IE interfaces
    • /
    • v.20 no.2
    • /
    • pp.204-215
    • /
    • 2007
  • This paper addresses vehicle routing planning in freight container transportation systems where a number of loaded containers are to be delivered to their destination places. The system under consideration is static in that all transportation requirements are predetermined at the beginning of a planning horizon. A two-phased procedure is presented for freight container transportation. In the first phase, the optimal model is presented to determine optimal total time to perform given transportation requirements and the minimum of number of vehicles required. Based on the results from the optimal model, in the second phase, ASA(Accelerated Simulated Annealing) algorithm is presented to perform all transportation requirements with the least number of vehicles by improving initial vehicle routing planning constructed by greedy method. It is found that ASA algorithm has an excellent global searching ability through various experiments in comparison with existing methods.

Combining Vehicle Routing with Forwarding : Extension of the Vehicle Routing Problem by Different Types of Sub-contraction

  • Kopfer, Herbert;Wang, Xin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.35 no.1
    • /
    • pp.1-14
    • /
    • 2009
  • The efficiency of transportation requests fulfillment can be increased through extending the problem of vehicle routing and scheduling by the possibility of subcontracting a part of the requests to external carriers. This problem extension transforms the usual vehicle routing and scheduling problems to the more general integrated operational transportation problems. In this contribution, we analyze the motivation, the chances, the realization, and the challenges of the integrated operational planning and report on experiments for extending the plain Vehicle Routing Problem to a corresponding problem combining vehicle routing and request forwarding by means of different sub-contraction types. The extended problem is formalized as a mixed integer linear programming model and solved by a commercial mathematical programming solver. The computational results show tremendous costs savings even for small problem instances by allowing subcontracting. Additionally, the performed experiments for the operational transportation planning are used for an analysis of the decision on the optimal fleet size for own vehicles and regularly hired vehicles.

Optimal Routing of Distribution System Planning using Hopfield Neural Network (홉필드 신경회로망을 이용한 배전계통계획의 최적 경로 탐색)

  • Kim, Dae-Wook;Lee, Myeong-Hwan;Kim, Byung-Seop;Shin, Joong-Rin;Chae, Myung-Suk
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1117-1119
    • /
    • 1999
  • This paper presents a new approach for the optimal routing problem of distribution system planning using the well known Hopfield Neural Network(HNN) method. The optimal routing problem(ORP) in distribution system planning(DSP) is generally formulated as combinational mixed integer problem with various equality and inequality constraints. For the exceeding nonlinear characteristics of the ORP most of the conventional mathematical methods often lead to a local minimum. In this paper, a new approach was made using the HNN method for the ORP to overcome those disadvantages. And for this approach, a appropriately designed energy function suited for the ORP was proposed. The proposed algorithm has been evaluated through the sample distribution planning problem and the simulation results are presented.

  • PDF

An Adaptive Genetic Algorithm Based Optimal Feeder Routing for Distribution System Planning (적응 유전알고리즘을 이용한 배전계통 계획의 급전선 최적경로 선정)

  • Kim, Byung-Seop;Kim, Min-Soo;Shin, Joong-rin
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.2
    • /
    • pp.58-66
    • /
    • 2001
  • This paper presents an application of a newly designed Adaptive Genetic Algorithm (AGA) to solve the Optimal Feeder Routing (OFR) problem for distribution system planning. The main objective of the OFR problem usually is to minimize the total cost that is the sum of investment costs and system operation costs. We propose a properly designed AGA, in this paper, which can handle the horizon-year expansion planning problem of power distribution network in which the location of substation candidates, the location and amount of forecasted demands are given. In the proposed AGA, we applied adaptive operators using specially designed adaptive probabilities. we also a Simplified Load Flow (SLF) technique for radial networks to improve a searching efficiency of AGA. The proposed algorithm has been evaluated with the practical 32, 69 bus test system to show favorable performance. It is also shown that the proposed method for the OFR can also be used for the network reconfiguration problem in distribution system.

  • PDF

Optimal Feeder Routing for Distribution System Planning Using a Heuristic Strategy (휴리스틱 탐색전략을 이용한 배전계통 계획의 급전선 최적 경로 선정)

  • Choi, Nam-Jin;Kim, Byung-Seop;Shin, Joong-Rin
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.11
    • /
    • pp.566-574
    • /
    • 2000
  • This paper propose a heuristic algorithm based on the Branch-Exchange (BE) method to solve Optimal feeder Routing(OFR) problem for the distribution system planning. The cost function of the OFR problem is consisted of the investment cost representing the feeder installation and the system operation cost representing the system power loss. We propose a properly designed heuristic strategy, which can handle the horizon-year expansion planning problem of power distribution network. We also used the loop selection method which can define the maximum loss reduction in the network to reduce calculation time, and proposed a new index of power loss which is designed to estimate the power loss reduction in the BE. The proposed index, can be considered with both sides, the low voltage side and voltage side branch connected with tie one. The performances of the proposed algorithms and loss index were shown with 32, 69 example bus system.

  • PDF

Process Planning in Flexible Assembly Systems Using a Symbiotic Evolutionary Algorithm (공생 진화알고리듬을 이용한 유연조립시스템의 공정계획)

  • Kim, Yeo-Keun;Euy, Jung-Mi;Shin, Kyoung-Seok;Kim, Yong-Ju
    • IE interfaces
    • /
    • v.17 no.2
    • /
    • pp.208-217
    • /
    • 2004
  • This paper deals with a process planning problem in the flexible assembly system (FAS). The problem is to assign assembly tasks to stations with limited working space and to determine assembly routing with the objective of minimizing transfer time of the products among stations, while satisfying precedence relations among the tasks and upper-bound workload constraints for each station. In the process planning of FAS, the optimality of assembly routing depends on tasks loading. The integration of tasks loading and assembly routing is therefore important for an efficient utilization of FAS. To solve the integrated problem at the same time, in this paper we propose a new method using an artificial intelligent search technique, named 2-leveled symbiotic evolutionary algorithm. Through computational experiments, the performance of the proposed algorithm is compared with those of a traditional evolutionary algorithm and a symbiotic evolutionary algorithm. The experimental results show that the proposed algorithm outperforms the algorithms compared.

Estimation of Vehicles Evacuation Time by using Lane-based Routing Method (차로기반 경로유도방식을 이용한 차량의 소개시간 추정)

  • Do, Myungsik
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.6
    • /
    • pp.29-36
    • /
    • 2013
  • This study is the fundamental research to establish evacuation planning and to analyze evacuation planning characteristics in Gumi-city based on existing network and traffic characteristics data. Assuming an emergency situation, it compared with evacuation time estimates between using existing traffic signal system and proposed lane-based routing method through micro simulations. As a result, using existing traffic signal system could not affect the evacuation times in each level of emergency conditions. However this study found that proposed lane-based routing method is very effective to reduce an evacuation time compared with using existing traffic signal system. Also the proposed method is verified to reduce an evacuation time especially in extreme emergency circumstances.