• 제목/요약/키워드: Routing Path Recovery

검색결과 40건 처리시간 0.027초

Resilient Routing Overlay Network Construction with Super-Relay Nodes

  • Tian, Shengwen;Liao, Jianxin;Li, Tonghong;Wang, Jingyu;Cui, Guanghai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권4호
    • /
    • pp.1911-1930
    • /
    • 2017
  • Overlay routing has emerged as a promising approach to improve reliability and efficiency of the Internet. The key to overlay routing is the placement and maintenance of the overlay infrastructure, especially, the selection and placement of key relay nodes. Spurred by the observation that a few relay nodes with high betweenness centrality can provide more optimal routes for a large number of node pairs, we propose a resilient routing overlay network construction method by introducing Super-Relay nodes. In detail, we present the K-Minimum Spanning Tree with Super-Relay nodes algorithm (SR-KMST), in which we focus on the selection and connection of Super-Relay nodes to optimize the routing quality in a resilient and scalable manner. For the simultaneous path failures between the default physical path and the overlay backup path, we also address the selection of recovery path. The objective is to select a proper one-hop recovery path with minimum cost in path probing and measurement. Simulations based on a real ISP network and a synthetic Internet topology show that our approach can provide high-quality overlay routing service, while achieving good robustness.

MRFR - Multipath-based Routing Protocol with Fast-Recovery of Failures on MANETs

  • Ngo, Hoai Phong;Kim, Myung Kyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권2호
    • /
    • pp.271-287
    • /
    • 2013
  • We propose a new multipath-based reliable routing protocol on MANETs, Multipath-based Reliable routing protocol with Fast-Recovery of failures (MRFR). For reliable message transmission, MRFR tries to find the most reliable path between a source and a destination considering the end-to-end packet reception reliability of the routes. The established path consists of a primary path that is used to transmit messages, and the secondary paths that are used to recover the path when detecting failures on the primary path. After establishing the path, the source transmits messages through the primary path. If a node detects a link failure during message transmission, it can recover the path locally by switching from the primary to the secondary path. By allowing the intermediate nodes to locally recover the route failure, the proposed protocol can handle the dynamic topological change of the MANETs efficiently. The simulation result using the QualNet simulator shows that the MRFR protocol performs better than other protocols in terms of the end-to-end message delivery ratio and fault-tolerance capability.

MRFR - Multipath-based Routing Protocol with Fast-Recovery of Failures on MANETs

  • Ngo, Hoai Phong;Kim, Myung Kyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권12호
    • /
    • pp.3081-3099
    • /
    • 2012
  • We propose a new multipath-based reliable routing protocol on MANETs, Multipath-based Reliable routing protocol with Fast-Recovery of failures (MRFR). For reliable message transmission, MRFR tries to find the most reliable path between a source and a destination considering the end-to-end packet reception reliability of the routes. The established path consists of a primary path that is used to transmit messages, and the secondary paths that are used to recover the path when detecting failures on the primary path. After establishing the path, the source transmits messages through the primary path. If a node detects a link failure during message transmission, it can recover the path locally by switching from the primary to the secondary path. By allowing the intermediate nodes to locally recover the route failure, the proposed protocol can handle the dynamic topological change of the MANETs efficiently. The simulation result using the QualNet simulator shows that the MRFR protocol performs better than other protocols in terms of the end-to-end message delivery ratio and fault-tolerance capability.

FTCARP: A Fault-Tolerant Routing Protocol for Cognitive Radio Ad Hoc Networks

  • Che-aron, Zamree;Abdalla, Aisha Hassan;Abdullah, Khaizuran;Rahman, Md. Arafatur
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권2호
    • /
    • pp.371-388
    • /
    • 2014
  • Cognitive Radio (CR) has been recently proposed as a promising technology to remedy the problems of spectrum scarcity and spectrum underutilization by enabling unlicensed users to opportunistically utilize temporally unused licensed spectrums in a cautious manner. In Cognitive Radio Ad Hoc Networks (CRAHNs), data routing is one of the most challenging tasks since the channel availability and node mobility are unpredictable. Moreover, the network performance is severely degraded due to large numbers of path failures. In this paper, we propose the Fault-Tolerant Cognitive Ad-hoc Routing Protocol (FTCARP) to provide fast and efficient route recovery in presence of path failures during data delivery in CRAHNs. The protocol exploits the joint path and spectrum diversity to offer reliable communication and efficient spectrum usage over the networks. In the proposed protocol, a backup path is utilized in case a failure occurs over a primary transmission route. Different cause of a path failure will be handled by different route recovery mechanism. The protocol performance is compared with that of the Dual Diversity Cognitive Ad-hoc Routing Protocol (D2CARP). The simulation results obviously prove that FTCARP outperforms D2CARP in terms of throughput, packet loss, end-to-end delay and jitter in the high path-failure rate CRAHNs.

Ad Hoc Network에서 Associativity을 고려한 Redundancy 경로 라우팅 (Redundancy Path Routing Considering Associativity in Ad Hoc Networks)

  • 이학후;안순신
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 가을 학술발표논문집 Vol.30 No.2 (3)
    • /
    • pp.199-201
    • /
    • 2003
  • Ad hoc network은 stationary infrastructure의 도움 없이 이동 노드들이 필요 시 network 형태을 구성하여 통신이 이루어지게 하는 network으로 ad hoc network 환경에 맞는 다양한 라우팅 프로토콜들이 개발되었고 크게는 table­driven, on­demand 방식으로 나눌 수 있는데 on­demand 방식의 AODV 프로토콜은 routing overhead가 적다는 장점이 있는 반면 single path로 data forwarding을 진행하여 중간노드의 이동에 의한 path가 broken되는 경우 local routing을 하거나 새로이 source­initialed route rediscovery을 수행하여 전송 delay 및 control traffic overhead 등을 높이는 결과를 발생 시켰다. 본 논문은 single path로 구성되는 AODV 프로토콜의 route failures시 문제점을 보완한 Associativity Based Redundancy path Routing(ABRR) 및 Alternate Redundancy path Routing(ARR) schemes을 제안한다. 첫째, ABRR은 main path상에 있는 각 노드들은 associativity based stable node 정보를 이용하여 path broken 이전에 local redundancy path을 구성하여 path broken시 local routing없이 route을 복구할 수 있게 하고 둘째, ARR은 source­initialed route discovery에 의해 alternate path을 구성하여 ABRR 그리고 local routing에 의해 main route recovery 실패 시 alternate path을 main path로 전환하여 control traffic overhead 및 전송 delay을 줄이게 한다.

  • PDF

6LoWPAN 기반의 계층적 라우팅을 위한 경로 복구 방법 (The Path Recovery Technique for Hierarchical Routing over 6LoWPAN)

  • 남춘성;정희진;신동렬
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2008년도 하계종합학술대회
    • /
    • pp.705-706
    • /
    • 2008
  • The feature of 6LoWPAN is the capability of the dynamic assignment of 16bit short addresses. By using this dynamically assigned short address, a hierarchical routing is employed. In case of node failure, this hierarchical routing don't support a technique for path recovery. So, this paper proposes the path recovery technique for hierarchical routing over 6LoWPAN.

  • PDF

Void Less Geo-Routing for Wireless Sensor Networks

  • Joshi, Gyanendra Prasad;Lee, Chae-Woo
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.433-435
    • /
    • 2007
  • Geographic wireless sensor networks use position information for Greedy routing. Greedy routing works well in dense network where as in sparse network it may fail and require the use of recovery algorithms. Recovery algorithms help the packet to get out of the communication void. However, these algorithms are generally costlier for resource constrained position based wireless sensor type networks. In the present work, we propose a Void Avoidance Algorithm (VAA); a novel idea based on virtual distance upgrading that allows wireless sensor nodes to remove all stuck nodes by transforming the routing graph and forward packet using greedy routing only without recovery algorithm. In VAA, the stuck node upgrades distance unless it finds next hop node which is closer to the destination than itself. VAA guarantees the packet delivery if there is a topologically valid path exists. NS-2 is used to evaluate the performance and correctness of VAA and compared the performance with GPSR. Simulation results show that our proposed algorithm achieves higher delivery ratio, lower energy consumption and efficient path.

  • PDF

PFC 기반의 서비스 복구 QoS 재라우팅 알고리즘에 관한 연구 (A Study on Service Recovery QoS Rerouting Algorithm Based on PFC)

  • 한정수;정진욱
    • 정보처리학회논문지C
    • /
    • 제9C권5호
    • /
    • pp.655-664
    • /
    • 2002
  • 현재 QoS 라우팅의 목적은 사용자 서비스들의 각 QoS 요구사항을 만족하는 최적의 경로를 찾아 서비스하는 것이다. 그러나 네트워크 상황에 따라 장애가 발생했을 경우 이들의 QoS 요구를 만족시킬 수 있는 또 다른 백업 경로를 사용하여 서비스해야 한다. 따라서 본 논문에서는 네트워크 상에 발생된 장애 상황에 대해 서비스되고 있는 각 응용들에 대한 복구 방법으로 서비스 복구 QoS 재라우팅 알고리즘을 제시하고자한다. 이를 위해 사전에 모든 네트워크 노드를 보호할 수 있는 PFC(Protection Fundamental Cycle) 생성 방법론과 최소의 재라우팅 비용을 사용하는 경로 선택 알고리즘들에 대해 살펴보고 이들에 대한 성능을 분석하기로 한다.

Interactive Multipath Routing Protocol for Improving the Routing Performance in Wireless Sensor Networks

  • Jung, Kwansoo
    • 디지털산업정보학회논문지
    • /
    • 제11권3호
    • /
    • pp.79-90
    • /
    • 2015
  • Multipath routing technique is recognized as one of the effective approaches to improve the reliability of data forwarding. However, the traditional multipath routing focuses only on how many paths are needed to ensure a desired reliability. For this purpose, the protocols construct additional paths and thus cause significant energy consumption. These problems have motivated the study for the energy-efficient and reliable data forwarding. Thus, this paper proposes an energy-efficient concurrent multipath routing protocol with a small number of paths based on interaction between paths. The interaction between paths helps to reinforce the multipath reliability by making efficient use of resources. The protocol selects several nodes located in the radio overlapped area between a pair of paths as bridge nodes for the path-interaction. In order to operate the bridge node efficiently, when the transmission failure has detected by overhearing at each path, it performs recovery transmission to recover the path failure. Simulation results show that proposed protocol is superior to the existing multipath protocols in terms of energy consumption and delivery reliability.

PERFORMANCE ANALYSES OF PATH RECOVERY ROUTING PROTOCOLS IN AD HOC NETWORKS

  • Wu, Mary;Kim, Chong-Gun
    • Journal of applied mathematics & informatics
    • /
    • 제26권1_2호
    • /
    • pp.235-249
    • /
    • 2008
  • On-demand routing protocol in ad hoc network is that establishes a route to a destination node only when it is required by a source node. But, it is necessary to reestablish a new route when an active route breaks down. The reconstruction process establishes another route by flooding messages from the source to the destination, cause not only heavy traffic but also long delays in route discovery. A good method for analyzing performance of protocols is important for deriving better systems. In this paper, we suggest the numerical formulas of a representative on-demand routing protocol AODV, ARMP, and RRAODV to estimate the performance of these routing protocols for analyzing the performance of these protocols. The proposed analytical models are very simple and straightforward. The results of analysis show good agreement with the results of computer simulations.

  • PDF