• Title/Summary/Keyword: Routing Algorithms

Search Result 436, Processing Time 0.03 seconds

On Performance Analysis of Position Based Routing Algorithms in Wireless Networks

  • Xuyen, Tran Thi;Kong, Hyung-Yun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.6A
    • /
    • pp.538-546
    • /
    • 2010
  • This paper presents an overview of position-based routing algorithms. We analyze performances of routing algorithms such as Hybrid Opportunistic Forwarding (HOF), Opportunistic multi-hop routing (ExOR), Location based Geocasting and Forwarding (LGF), and Greedy Forwarding in nearest with forward Progress (GFP) routing algorithms to find the best one in terms of packet error rate and throughput efficiency over effects of fading and noise variance in wireless networks. The analyses in closed form expressions are confirmed by the simulation results, which fully agree to analysis results. Additionally, the simulation results indicate significant differences among algorithms when varying the average SNR or the number of relays.

Novel online routing algorithms for smart people-parcel taxi sharing services

  • Van, Son Nguyen;Hong, Nhan Vu Thi;Quang, Dung Pham;Xuan, Hoai Nguyen;Babaki, Behrouz;Dries, Anton
    • ETRI Journal
    • /
    • v.44 no.2
    • /
    • pp.220-231
    • /
    • 2022
  • Building smart transportation services in urban cities has become a worldwide problem owing to the rapidly increasing global population and the development of Internet-of-Things applications. Traffic congestion and environmental concerns can be alleviated by sharing mobility, which reduces the number of vehicles on the road network. The taxi-parcel sharing problem has been considered as an efficient planning model for people and goods flows. In this paper, we enhance the functionality of a current people-parcel taxi sharing model. The adapted model analyzes the historical request data and predicts the current service demands. We then propose two novel online routing algorithms that construct optimal routes in real-time. The objectives are to maximize (as far as possible) both the parcel delivery requests and ride requests while minimizing the idle time and travel distance of the taxis. The proposed online routing algorithms are evaluated on instances adapted from real Cabspotting datasets. After implementing our routing algorithms, the total idle travel distance per day was 9.64% to 12.76% lower than that of the existing taxi-parcel sharing method. Our online routing algorithms can be incorporated into an efficient smart shared taxi system.

Routing Protocols for VANETs: An Approach based on Genetic Algorithms

  • Wille, Emilio C. G.;Del Monego, Hermes I.;Coutinho, Bruno V.;Basilio, Giovanna G.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.542-558
    • /
    • 2016
  • Vehicular Ad Hoc Networks (VANETs) are self-configuring networks where the nodes are vehicles equipped with wireless communication technologies. In such networks, limitation of signal coverage and fast topology changes impose difficulties to the proper functioning of the routing protocols. Traditional Mobile Ad Hoc Networks (MANET) routing protocols lose their performance, when communicating between vehicles, compromising information exchange. Obviously, most applications critically rely on routing protocols. Thus, in this work, we propose a methodology for investigating the performance of well-established protocols for MANETs in the VANET arena and, at the same time, we introduce a routing protocol, called Genetic Network Protocol (G-NET). It is based in part on Dynamic Source Routing Protocol (DSR) and on the use of Genetic Algorithms (GAs) for maintenance and route optimization. As G-NET update routes periodically, this work investigates its performance compared to DSR and Ad Hoc on demand Distance Vector (AODV). For more realistic simulation of vehicle movement in urban environments, an analysis was performed by using the VanetMobiSim mobility generator and the Network Simulator (NS-3). Experiments were conducted with different number of vehicles and the results show that, despite the increased routing overhead with respect to DSR, G-NET is better than AODV and provides comparable data delivery rate to the other protocols in the analyzed scenarios.

New Bandwidth Guaranteed Routing Algorithms based on K-Shortest Path Algorithm (K-Shortest Path 알고리즘에 기초한 새로운 대역폭 보장 라우팅 알고리즘)

  • 이준호;이성호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.11B
    • /
    • pp.972-984
    • /
    • 2003
  • In this paper, new on-line routing algorithms with a bandwidth constraint are proposed. The proposed algorithms may be used for a dynamic LSP setup in MPLS network. We extend the WSP algorithm, the SWP algorithm and a utilization-based routing algorithm into the proposed algorithms by slightly modified K-shortest loopless path algorithms. The performances such as accepted bandwidth, accepted request number and average path length of the proposed and the previous algorithms are evaluated through extensive simulations. All simulations are conducted under the condition that any node can be an ingress or egress node for a LSP setup. The simulation results show that the proposed algorithms have the good performances in most cases in comparison to the previous algorithms. Under the heavy load condition, the algorithms based on the minimum hop path perform better than any other algorithms.

Void Less Geo-Routing for Wireless Sensor Networks

  • Joshi, Gyanendra Prasad;Lee, Chae-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.433-435
    • /
    • 2007
  • Geographic wireless sensor networks use position information for Greedy routing. Greedy routing works well in dense network where as in sparse network it may fail and require the use of recovery algorithms. Recovery algorithms help the packet to get out of the communication void. However, these algorithms are generally costlier for resource constrained position based wireless sensor type networks. In the present work, we propose a Void Avoidance Algorithm (VAA); a novel idea based on virtual distance upgrading that allows wireless sensor nodes to remove all stuck nodes by transforming the routing graph and forward packet using greedy routing only without recovery algorithm. In VAA, the stuck node upgrades distance unless it finds next hop node which is closer to the destination than itself. VAA guarantees the packet delivery if there is a topologically valid path exists. NS-2 is used to evaluate the performance and correctness of VAA and compared the performance with GPSR. Simulation results show that our proposed algorithm achieves higher delivery ratio, lower energy consumption and efficient path.

  • PDF

Performance Improvement on MPLS On-line Routing Algorithm for Dynamic Unbalanced Traffic Load

  • Sa-Ngiamsak, Wisitsak;Sombatsakulkit, Ekanun;Varakulsiripunth, Ruttikorn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1846-1850
    • /
    • 2005
  • This paper presents a constrained-based routing (CBR) algorithm called, Dynamic Possible Path per Link (D-PPL) routing algorithm, for MultiProtocol Label Switching (MPLS) networks. In MPLS on-line routing, future traffics are unknown and network resource is limited. Therefore many routing algorithms such as Minimum Hop Algorithm (MHA), Widest Shortest Path (WSP), Dynamic Link Weight (DLW), Minimum Interference Routing Algorithm (MIRA), Profiled-Based Routing (PBR), Possible Path per Link (PPL) and Residual bandwidth integrated - Possible Path per Link (R-PPL) are proposed in order to improve network throughput and reduce rejection probability. MIRA is the first algorithm that introduces interference level avoidance between source-destination node pairs by integrating topology information or address of source-destination node pairs into the routing calculation. From its results, MIRA improves lower rejection probability performance. Nevertheless, MIRA suffer from its high routing complexity which could be considered as NP-Complete problem. In PBR, complexity of on-line routing is reduced comparing to those of MIRA, because link weights are off-line calculated by statistical profile of history traffics. However, because of dynamic of traffic nature, PBR maybe unsuitable for MPLS on-line routing. Also, both PPL and R-PPL routing algorithm we formerly proposed, are algorithms that achieve reduction of interference level among source-destination node pairs, rejection probability and routing complexity. Again, those previously proposed algorithms do not take into account the dynamic nature of traffic load. In fact, future traffics are unknown, but, amount of previous traffic over link can be measured. Therefore, this is the motivation of our proposed algorithm, the D-PPL. The D-PPL algorithm is improved based on the R-PPL routing algorithm by integrating traffic-per-link parameters. The parameters are periodically updated and are dynamically changed depended on current incoming traffic. The D-PPL tries to reserve residual bandwidth to service future request by avoid routing through those high traffic-per-link parameters. We have developed extensive MATLAB simulator to evaluate performance of the D-PPL. From simulation results, the D-PPL improves performance of MPLS on-line routing in terms of rejection probability and total throughput.

  • PDF

Study on High Speed Routers(I)-Labeling Algorithms for STC104 (고속라우터에 대한 고찰(I)-STC104의 레이블링 알고리즘)

  • Lee, Hyo-Jong
    • The KIPS Transactions:PartA
    • /
    • v.8A no.2
    • /
    • pp.147-156
    • /
    • 2001
  • A high performance routing switch is an essential device to either the high performance parallel processing or communication networks that handle multimedia transfer systems such as VOD. The high performance routing chip called STC104 is a typical example in the technical aspect which has 32 bidirectional links of 100Mbps transfer sped. It has exploited new technologies, such as wormhole routing, interval labeling, and adaptive routing method. The high speed router has been applied into some parallel processing system as a single chip. However, its performance over the various interconnection networks with multiple routing chips has not been studied. In this paper, the strucrtures and characteristics of the STC104 have been investigated in order to evaluate the high speed router. Various topology of the STC104, such as meshes, torus, and N-cube are defined and constructed. Algorithms of packet transmission have been proposed based on the interval labeling and the group adaptive routing method implemented in the interconnected network. Multicast algorithms, which are often requited to the processor networks and broadcasting systems, modified from U-mesh and U-torus algorithms have also been proposed overcoming the problems of point-to-point communication.

  • PDF

Channel Selection Technique Considering Energy Efficiency in Routing Algorithms of the Sensor Network (센서네트워크의 라우팅 프로토콜에서 에너지 효율을 고려한 채널 선택 기법)

  • Subedi, Sagun;Lee, Sang-Il
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.5
    • /
    • pp.662-665
    • /
    • 2020
  • Energy Efficiency in any WSN (Wireless Sensor Network) is a critical issue to elongate the life of the batteries equipped in sensors. LEACH(Low Energy Adaptive Clustering Hierarchy) is one of the mostly used routing algorithms which reduce the amount of transmitted data and save the energy in the network. In this paper, a new technique to select channels in routing algorithms is suggested and compared with the LEACH, ALEACH and PEGASIS. This technique forms clusters depending upon the node density as the deployement of the nodes is random. As a result, the proposed algorithm presents the better performance of the energy efficiency than those of the current algorithms.

Routing Algorithms on a Ring-type Data Network (링 구조의 데이터 통신망에서의 라우팅 방안)

  • Ju, Un-Gi
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.238-242
    • /
    • 2005
  • This paper considers a routing problem on a RPR(Resilient Packet Ring). The RPR is one of the ring-type data telecommunication network. Our major problem is to find an optimal routing algorithm for a given data traffic on the network under no splitting the traffic service, where the maximum load of a link is minimized. This paper characterizes the Minmax problem and develops two heuristic algorithms. By using the numerical comparison, we show that our heuristic algorithm is valuable for efficient routing the data traffic on a RPR.

  • PDF