• Title/Summary/Keyword: Route_Reconf

Search Result 2, Processing Time 0.016 seconds

A Novel Scheme for an RSVP Session Handoff in Wireless IP Networks with Micro-Mobility (Micro-Mobility 환경에서의 RSVP Session Handoff를 위한 연구)

  • Kim, Jeong-Hoe;Min, Sang-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4B
    • /
    • pp.199-206
    • /
    • 2008
  • In this paper, we propose a novel Route_Reconf message as the RSVP message to maintain an RSVP session for hard handoff and consider path-comparing route (PCR) a PCR algorithm to find an intermediate node in the charge of downlink re-establishment. And, we consider information form each mode for the PCR algorithm, which also reduces the frequency and amount of exchanged RSVP message to minimize packet loss and delay between an intermediate node and a receiver. According to the proposed algorithm, a new support node (NSN) and an existing support node (ESN) along the RSVP path can be found; the former is a supporting RSVP session node newly searched and the latter is the last supporting node holding the previous session after handoff. On receiving the Route_Reconf message at the ESN, a new allocated route from a NSN to the MN waiting for the handoff via a new AR is configured by the ESN.

A Novel Scheme for an RSVP Session Handoff in Wireless IP Networks with Micro-Mobility (Micro-Mobility 환경에서의 RSVP Session Handoff를 위한 연구)

  • Kim, Jeong-Hoe;Min, Sang-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.5B
    • /
    • pp.296-303
    • /
    • 2008
  • In this paper, we propose a novel Route_Reconf message as the RSVP message to maintain an RSVP session for hard handoff and consider a path-comparing route(PCR) algorithm to find an intermediate node in the charge of down-link re-establishment. And, we consider information form each mode for the PCR algorithm, which also reduces the frequency and amount of exchanged RSVP message to minimize packet loss and delay between an intermediate node and a receiver. According to the proposed algorithm, a new support node(NSN) and an existing support node(ESN) along the RSVP path can be found; the former is a supporting RSVP session node newly searched and the latter is the last supporting node holding the previous session after handoff. On receiving the Route_Reconf message at the ESN, a new allocated route from a NSN to the MN waiting for the handoff via a new access router is configured by the ESN.