• Title/Summary/Keyword: Roughness of surface treatment

Search Result 591, Processing Time 0.025 seconds

Effect of Alkali Surface Modification on Adhesion Strength between Electroless-Plated Cu and Polyimide Films (알카리 표면개질 처리가 무전해 구리 도금피막과 폴리이미드 필름의 접합력에 미치는 효과)

  • Son, Lee-Seul;Lee, Ho-Nyun;Lee, Hong-Kee
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.1
    • /
    • pp.8-14
    • /
    • 2012
  • The effects of the alkali surface modification process on the adhesion strength between electroless-plated Cu and polyimide films were investigated. The polyimide surfaces were effectively modified by alkali surface treatments from the hydrophobic to the hydrophilic states, and it was confirmed by the results of the contact angle measurement. The surface roughness increased by alkali surface treatments and the adhesion strength was proportional to the surface roughness. The adhesion strength of Cu/polyimide interface treated by KOH + EDA (Ethylenediamine) was 874 gf/cm which is better than that treated by KOH and KOH + $KMnO_4$. The results of XPS spectra revealed that the alkali treatment formed oxygen functional groups such as carboxyl and amide groups on the polyimide films which is closely related to the interfacial bonding mechanism between electroless-plated Cu and polyimide films. It could be suggested that the species and contents of functional group on polyimide films, surface roughness and contact angle were related with the adhesion strength of Cu/polyimide in combination.

Control of Nano-Scaled Surface Microstructure of Al Sample for Improving Heat Release Ability (Al 소재의 방열특성 향상을 위한 미세조직 제어 연구)

  • Yeo, In-Chul;Kang, In-Cheol
    • Journal of Powder Materials
    • /
    • v.22 no.1
    • /
    • pp.21-26
    • /
    • 2015
  • In this study, the control of microstructure for increasing surface roughness of Al with an electro-chemical reaction and a post treatment is systematically investigated. The Al specimen is electro-chemically treated in an electrolyte. In condition of the post treatment at $100^{\circ}C$ for 10 min, a change of the surface microstructure occur at 50V (5 min), and a oxidized layer is at 400V, to which lead a decreasing surface roughness. The minimum temperature of the post treatment for a change of microstructure is $80^{\circ}C$. Moreover, in the condition of 300V (5 min), the electro-chemical reaction is followed by the post treatment at $100^{\circ}C$, the critical enduring time for the change of microstructure is 3 min. The longer post treatment time leads to the rougher surface. The treated Al specimen demonstrate better heat release ability owing to the higher surface roughness than the non-treated Al.

Study on the Effect of Sputtering Process on the Adhesion Strength of CrZrN Films Synthesized by a Duplex Surface Treatment Process (복합표면처리된 CrZrN 박막의 밀착력에 미치는 스퍼터링 효과에 관한 연구)

  • Kim, M.K.;Kim, E.Y.;Lee, S.Y.
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.6
    • /
    • pp.268-275
    • /
    • 2006
  • In this study, effect of sputtering on the plasma-nitriding substrate and before PVD coating on the microstucture, microhardness, surface roughness and the adhesion strength of CrZrN thin films were investigated. Experimental results showed that this sputtering process not only removed surface compound layer which formed during a plasma nitriding process but also induced an alteration of the surface of plasma nitrided substrate in terms of microhardness distribution, surface roughness. This in turn affected the adhesion strength of PVD coatings. After sputtering, microhardness distribution showed general decrease and the surface roughness became increased slightly. The critical shear stress measured from the scratch test on the CrZrN coatings showed an approximately 1.4 times increase in the adhesion strength through the sputtering prior to the coating and this could be attributed to a complete removal of compound layer from the plasma nitrided surface and to an increase in the surface roughness after sputtering.

Selection of the Efficient Superfinishing Condition on an Anodized Al7075 Surface in Experimental Design (실험계획법을 이용한 아노다이징 표면 처리된 Al7075 소재의 효율적인 수퍼피니싱 조건 선정에 관한 연구)

  • Lee, Soon-Jong;Choi, Su-Hyun;Cho, Young-Tae;Jung, Yoon-Gyo;Jung, Jong-Yun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.12
    • /
    • pp.993-998
    • /
    • 2016
  • In today's manufacturing industries, the demand for light non-ferrous materials is considerable due to the need to improve productivity and manufacturability. Since the surface roughness of a material is important for improving the functionality of machined parts, various techniques for surface treatments have been developed to obtain non-ferrous materials with low roughness. A superfinishing method utilizing polishing films is generally applied to the anodized surface of Al7075 in order to improve its roughness. The objective of this research is to determine through experiment the parameters that facilitate the shortest processing time, using a superfinishing method, for reaching a roughness of Ra $0.2{\mu}m$. This objective is met by applying the Taguchi method in the experiments. Through the experiments of superfinishing, the effectiveness of the parameters adopted for the surface treatment is demonstrated.

Surface Properties of WO3/Ag/WO3 Transparent Electrode Film with Multilayer Structures (적층구조에 적용하기 위한 WO3/Ag/WO3 투명전극막의 표면 특성 제어)

  • Kang, Dong-Soo;Lee, Boong-Joo;Kwon, Hong-Kyu;Shin, Paik-Kyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.9
    • /
    • pp.1323-1329
    • /
    • 2015
  • The WO3/Ag/WO3 transparent thin films are fabricated by the RF magnetron sputtering. This has a transmittance of front and rear about 90% in the visible light range and surface resistance of 6.41Ω/□. In this paper, we analyzed the surface characteristics caused by the working pressure and O2 plasma surface treatment to apply a transparent electrode that was prepared to the laminated structure with other materials. The working pressure was changed in the WO3 film to 10mTorr, 7mTorr, and 5mTorr, it showed a lower than roughness of conventional ITO. In addition, by 55.5774 J/m2 at 5mTorr, it shows the hydrophobic property with lower process pressure. O2 plasma surface treatment was changed at the condisions of the RF power to 150W, 100W, and 50W and the process time to 240s, 180s, 120s, and 60s. The surface roughness are the maximum roughness(Rmax) 6.437nm and the average roughness(Rq) 0.827nm at RF power 150W, and the maximum roughness (Rmax) 6.880nm and the average roughness (Rq) 0.839nm at process time 240sec. It showed a lower value than the surface treatment. also about working pressure and process time is increased, it showed the hydrophobic.

A Study on Adhesive Properties of Cellulose Triacetate Film by Argon Low Temperature Plasma Treatment (아르곤 저온 플라즈마 처리에 의한 CTA 필름의 접착성 연구)

  • Koo Kang;Park Young Mi
    • Textile Coloration and Finishing
    • /
    • v.16 no.5
    • /
    • pp.28-34
    • /
    • 2004
  • The polarizing film application exploits the unique physicochemical properties between PVA(Poly vinyl alcohol) film and CTA(Cellulose triacetate) film. However, hardly any research was aimed at improving the adhesion characteristics of the CTA film by radio frequency(RF) plasma treatment at argon(Ar) gaseous state. In this report, we deal with surface treatment technology for protective CTA film developed specifically for high adhesion applications. After Ar plasma, surface of the films is analyzed by atomic force microscopy(AFM), roughness parameter and peel strength. Furthermore, the wetting properties of the CTA film were studied by contact angle analysis. Results obtained for CTA films treated with a glow discharge showed that this technique is sensitive to newly created physical functions. The roughness and peel strength value increased with an increase in treatment time for initial treatment, but showed decreasing trend for continuous treatment time. The result of contact angle measurement refer that the hydrophilicity of surface was increased. AFM studies indicated that no considerable change of surface morphology occurred up to 3 minutes of treatment time, but a considerable uneven of surface structure resulted from treating time after 5 minutes.

Modeling of Sand Blasting Process for Anti-Glare Surface Treatment of Display Glass (디스플레이 유리의 눈부심 방지 표면처리를 위한 샌드 블래스팅 공정의 모형화)

  • Min, Chul Hong;Kim, Tae Seon
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.5
    • /
    • pp.303-308
    • /
    • 2018
  • Currently hydrofluoric acid (HF) based glass etch method is widely used for anti-glare (AG) surface treatment since it can effectively alleviate the specular reflection problem with relatively low processing cost. However, due to the environmental regulation and safety problem, it is essential to develop alternative technology to replace this method. For this, in this paper, we propose sand blasting based AG surface treatment method for display glass. To characterize the sand blasting process, surface roughness, haze, surface durability, and flatness are considered as process outputs and central composite design (CCD) method and response surface model (RSM) method are applied to model each process output. Models for surface roughness and haze showed 96.44% and 97.24% of R-squared values, respectively and they can be applied to optimize AG surface treatment process for various haze level requirements of display industries.

Oxidation Behavior of Nuclear Graphite(IG110) with Surface Roughness (표면조도에 따른 원자로급 흑연(IG110)의 산화거동)

  • Cho, Kwang-Youn;Kim, Kyong-Ja;Lim, Yun-Soo;Chi, Se-Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.10 s.293
    • /
    • pp.613-618
    • /
    • 2006
  • Graphite is suitable materials as a moderator, reflector, and supporter of a nuclear reactor because of high tolerance to the high temperature and neutron irradiations. Because graphite is so weak to the oxidation, its oxidation study is essentially demanded for the operation and design of the nuclear reactor. This work focuses on the effect of the surface oxidation of graphite according to the surface treatment. With thermogravimeter (TG), oxidation characteristics of the isotropic graphite are measured at the three temperature areas, and oxidation ratio and amounts are estimated as changing the surface roughness. Furthermore, the polished graphite surface produced fom the surface treatment is investigated with the Raman spectroscopic study. Oxidation behaviors of the surface are also evaluated as elimination the polished layer by washing with strong sonication.

Effect of surface treatments on shear bond strength of resin composite bonded to CAD/CAM resin-ceramic hybrid materials

  • Gungor, Merve Bankoglu;Nemli, Secil Karakoca;Bal, Bilge Turhan;Unver, Senem;Dogan, Aylin
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.4
    • /
    • pp.259-266
    • /
    • 2016
  • PURPOSE. The purpose of this study was to assess the effect of surface treatments on shear bond strength of resin composite bonded to thermocycled and non-thermocycled CAD/CAM resin-ceramic hybrid materials. MATERIALS AND METHODS. 120 specimens ($10{\times}10{\times}2mm$) from each material were divided into 12 groups according to different surface treatments in combination with thermal aging procedures. Surface treatment methods were airborne-particle abrasion (abraded with 50 micron alumina particles), dry grinding (grinded with $125{\mu}m$ grain size bur), and hydrofluoric acid (9%) and silane application. According to the thermocycling procedure, the groups were assigned as non-thermocycled, thermocycled after packing composites, and thermocycled before packing composites. The average surface roughness of the non-thermocycled specimens were measured after surface treatments. After packing composites and thermocycling procedures, shear bond strength (SBS) of the specimens were tested. The results of surface roughness were statistically analyzed by 2-way Analysis of Variance (ANOVA), and SBS results were statistically analyzed by 3-way ANOVA. RESULTS. Surface roughness of GC were significantly lower than that of LU and VE (P<.05). The highest surface roughness was observed for dry grinding group, followed by airborne particle abraded group (P<.05). Comparing the materials within the same surface treatment method revealed that untreated surfaces generally showed lower SBS values. The values of untreated LU specimens showed significantly different SBS values compared to those of other surface treatment groups (P<.05). CONCLUSION. SBS was affected by surface treatments. Thermocycling did not have any effect on the SBS of the materials except acid and silane applied GC specimens, which were subjected to thermocycling before packing of the composite resin.

Root surface roughness following mechanical instrumentation, in vitro 3 dimensional planimetric study (기구조작후 치근표면의 조도에 관한 연구; 3차원 측정기틀 이용한 in vitro 연구)

  • Lee, Young-Kyoo
    • Journal of Periodontal and Implant Science
    • /
    • v.28 no.4
    • /
    • pp.823-828
    • /
    • 1998
  • A primary goal of periodontal therapy is the creation of root surfaces that are free of plaque and calculus. It is not yet to be determined whether it is desirable to have a smooth root surface after treatment. It is also not clear what degree of roughness result from different instruments. In the present study various instruments for root surface debridement were evaluated. 20 extracted teeth were utilized, and the teeth were treated with one of the following instrument: Gracey curette, Perio Clean, and piezo ultrasonic device(Setlec, P Max) with general scaler tip, curette-like tip, and diamond tip. 3 dimensional planimetric device(Accura) was used to evaluate the average surface roughness. It was demonstrated hand and power-driven instruments did not have a significant difference in roughness of the root surface following instrumentation. And ultrasonic scaler tip tended to make a most smooth surface than other instruments. The possible reasons of the result were discussed.

  • PDF