• Title/Summary/Keyword: Roughness Parameter

Search Result 277, Processing Time 0.025 seconds

Effect of the Laser Beam Size on the Cure Properties of a Photopolymer in Stereolithography

  • Sim, Jae-Hyung;Lee, Eun-Dok;Kweon, Hyeog-Jun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.4
    • /
    • pp.50-55
    • /
    • 2007
  • Stereolithography (SLA) is a technique using a laser beam to cure a photopolymer liquid resin with three-dimensional computer-aided design (CAD) data, The accuracy of the prototype, the build time, and the cured properties of the resins are controlled by the SLA process parameters such as the size of the laser beam, scan velocity, hatch spacing, and layer thickness, In particular, the size of the laser beam is the most important parameter in SLA, This study investigated the curing properties of photopolymers as a function of the laser beam size, The cure width and depth were measured either on a single cure line or at a single cure layer for various hatch spacings and laser beam sizes, The cure depth ranged from 0.23 to 0.34 mm and was directly proportional to the beam radius, whereas the cure width ranged from 0.42 to 1.07 mm and was inversely proportional to the beam radius, The resulting surface roughness ranged from 1.12 to $2.23{\mu}m$ for a ratio of hatch spacing to beam radius in the range 0.5-2.0 at a beam radius of 0.17 mm and a scan velocity of 125 mm/sec.

A Study on the Grinding Characteristics of the Quartz(II) (Quartz의 연삭 특성에 관한 연구 (II))

  • Lim, J. G.;Ha, S. B.;Kim, S. H.;Choi, H.;lee, J. C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.875-879
    • /
    • 2000
  • In the previous report1), the grinding characteristics of quartz were investigated. In this paper, the grinding mechanisms of brittle materials including ceramics and quartz are modeled and a new parameter SDR(Surface roughness Direction Ratio) is proposed to characterize the grinding mechanisms of such materials. A set of experiments were performed to verify the effectiveness of the suggested parameter. The experimental results indicate that the plastic deformation is the dominant material removal mode at the grinding conditions which show the higher value of SDR. In the case of quartz, the material was removed by brittle fracture in a lower value of SDR and by plastic deformation in a higher value of it. SDR is not affected by wheel mesh size when brittle fracture occured. But in the plastic deformation case, SDR value increases with wheel mesh size.

  • PDF

Fabrication of a Brain Model using the Adaptive Slicing Technique (적응단면기법을 이용한 뇌모형제작)

  • Yeom, Sang-Won;Um, Tai-Joon;Joo, Yung-Chul;Kim, Seung-Woo;Kong, Yong-Hae;Chun, In-Gook;Bang, Jae-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.4
    • /
    • pp.485-490
    • /
    • 2003
  • RP(Rapid Prototyping) has been used in the various industrial applications. This paper presents the optimization techniques fur fabricated 3D model design using RP machine for the medical field. Once the original brain model data are obtained from 2D slices of MRI/CT machine, the data can be modeled as an optimal ellipse. The objective of this study includes optimization of fabrication time and surface roughness using the adaptive slicing method. It can reduce fabrication time without losing surface roughness quality by accumulating the slices with variable thickness. According to the parameter tuning and synthesis of its effect, more suitable parameter values can be obtained by enhanced 3D brain model fabrication. Therefore, accurate 3D brain model fabricated by RP machine can enable a surgeon to perform pre-operation. to make a decision for the operation sequence and to perceive the 3D positions in prototype, before delicate operation of actual surgery.

Cure Properties in Photopolymer for Stereolithography according to Variance of Laser Beam Size (레이저빔 크기변화에 따른 광조형수지의 경화특성)

  • 이은덕;심재형;백인환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.76-84
    • /
    • 2003
  • Stereolithography is the technique using a laser beam to cure a liquid resin, a photopolymer, with three dimensional computer-aided design (CAD) data. The build parameters of stereolithography such as beam size, scan velocity. hatch spacing, layer thickness and etc. are determined by the accuracy of prototype, the build time and the cured properties of the resin. In particular, beam size is important processing parameter fur the other parameters. Therefore, this study observed the cured property to beam size. For this purpose, according to hatch spacing and beam size, the cure width and depth were measured on single cured line. Also, the cure width and depth were measured at single cured layer As a result of experiments. cure depth which varied from 0.23mm to 0.34mm was directly proportioned to beam radius. on the other hand, cure width which varied from 0.42mm to 1.07mm was inversely proportioned to beam radius. Surface roughness varied from 1.12 to 2.23 m for the ratio of hatch spacing to beam radius.

Analysis of Contact Stiffness and Bending Stiffness according to Contact Angle of Curvic Coupling (곡률 커플링 접촉각에 따른 접촉 강성 및 굽힘 강성해석)

  • Yu, Yonghun;Cho, Yongjoo;Lee, Donghyun;Kim, Young-Cheol
    • Tribology and Lubricants
    • /
    • v.34 no.1
    • /
    • pp.23-32
    • /
    • 2018
  • Coupling is a mechanical component that transmits rotational force by connecting two shafts. Curvic coupling is widely used in high-performance systems because of its excellent power transmission efficiency and easy machining. However, coupling applications change dynamic behavior by reducing the stiffness of an entire system. Contact surface stiffness is an important parameter that determines the dynamic behavior of a system. In addition, the roughness profile of a contact surface is the most important parameter for obtaining contact stiffness. In this study, we theoretically establish the process of contact and bending stiffness analysis by considering the rough surface contact at Curvic coupling. Surface roughness parameters are obtained from Nayak's random process, and the normal contact stiffness of a contact surface is calculated using the Greenwood and Williamson model in the elastic region and the Jackson and Green model in the elastic-plastic region. The shape of the Curvic coupling contact surface is obtained by modeling a machined shape through an actual machining tool. Based on this modeling, we find the maximum number of gear teeth that can be machined according to the contact angle. Curvic coupling stiffness is calculated by considering the contact angle, and the calculation process is divided into stick and slip conditions. Based on this process, we investigate the stiffness characteristics according to the contact angle.

Uncertainty Quantification Index of SWMM Model Parameters (SWMM 모형 매개변수의 불확실성 정량화 지수 산정)

  • Chung, Gunhui;Sim, Kyu Bum;Kim, Eung Seok
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.2
    • /
    • pp.105-114
    • /
    • 2015
  • In the case of rapidly developed urban and industrial complex, the most area becomes impervious, which causes the increasing runoff and high probability of flooding. SWMM model has been widely used to calculate stormwater runoff in urban areas, however, the model is limited to interpreting the actual natural phenomenon. It has the uncertainty in the model structure, so it is difficult to calculate the accurate runoff from the urban basin. In this study, the model parameters were investigated and uncertainty was quantified using Uncertainty Quantification Index (UQI). As a result, pipe roughness coefficient has the largest total uncertainty and largest effect on the total runoff. Therefore, when the stormwater pipe network is designed, pipe roughness coefficient has to be calibrated accurately. The quantified uncertainty should be considered in the runoff calculation. It is recommended to understand the characteristics of each parameter for the prevention and mitigation of urban flood.

Accuracy Improvement of Urban Runoff Model Linked with Optimal Simulation (최적모의기법과 연계한 도시유출모형의 정확도 개선)

  • Ha, Chang-Young;Kim, Byunghyun;Son, Ah-Long;Han, Kun-Yeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.2
    • /
    • pp.215-226
    • /
    • 2018
  • The purpose of this study is to improve the accuracy of the urban runoff and drainage network analysis by using the observed water level in the drainage network. To do this, sensitivity analysis for major parameters of SWMM (Storm Water Management Model) was performed and parameters were calibrated. The sensitivity of the parameters was the order of the roughness of the conduit, the roughness of the impervious area, the width of the watershed, and the roughness of the pervious area. Six types of scenarios were set up according to the number and types of parameter considering four parameters with high sensitivity. These scenarios were applied to the Seocho-3/4/5, Yeoksam, and Nonhyun drainage basins, where the serious flood damage occurred due to the heavy rain on 21 July, 2013. Parameter optimization analysis based on PEST (Parameter ESTimation) model for each scenario was performed by comparing observed water level in the conduits. By analyzing the accuracy of each scenario, more improved simulation results could be obtained, that is, the maximum RMSE (Root Mean Square Error) could be reduced by 2.41cm and the maximum peak error by 13.7%. The results of this study will be helpful to analyze volume of the manhole surcharge and forecast the inundation area more accurately.

Implementation of Roughness-Induced Turbulent Transition Model on Inflight Icing Code (표면 조도를 고려한 난류 천이 모델의 항공기 결빙 해석자에 대한 적용 연구)

  • Min, Seungin;Yee, Kwanjung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.1
    • /
    • pp.23-33
    • /
    • 2020
  • In this study, the effect of surface roughness distribution and its influence on the inflight icing code was investigated. Previous numerical studies focused on the magnitude of surface roughness, and the effects were only addressed in terms of changes in thermal boundary layers with fully turbulent assumption. In addition, the empirical formula was used to take account the turbulent transition due to surface roughness, which was regarded as reducing the accuracy of ice shape prediction. Therefore, in this study, the turbulent transition model based on the two-equation turbulence model was applied to consider the effects of surface roughness. In order to consider the effect of surface roughness, the transport equation for roughness amplification parameter was applied, and the surface roughness distribution model was implemented to consider the physical properties. For validation, the surface roughness, convective heat transfer coefficient, and ice shape were compared with experimental results and other numerical methodology. As a result, it was confirmed that the excessive prediction of the heat transfer coefficient at the leading edge and the ice horn shape at the bottom of the airfoil were improved accordingly.

Sensitivity of WindSIM in Complex Terrain

  • Shin, Chongwon;Han, Kyungseop
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.180.2-180.2
    • /
    • 2010
  • The purpose of this research is to analyze the sensitivity of WindSIM in complex terrain. As the flat areas for wind turbine installation become scarce globally, it becomes inevitable to install wind turbines in complex terrain. In order to predict annual energy production (AEP) in a more precise manner in complex terrain, it is of great importance to conduct such research. Three parameters: reference velocity, roughness and resolution have been chosen to see to which parameter WindSIM was the most sensitive in terms of annual energy production in complex terrain. By fixing two parameters and setting one parameter as a variable, it could be easily found that how annual energy production was effected by the change in each parameter.

  • PDF

Prediction of Industrial Noise Propagation Subjected to Ground Effect (지표면의 반사특성을 고려한 환경소음 예측)

  • 한상보
    • Journal of KSNVE
    • /
    • v.11 no.2
    • /
    • pp.329-335
    • /
    • 2001
  • The analytical model of the ground wave can be used for the prediction of the noise level from a source above a plain and homogeneous ground surface with no obstacles nearby. Sound propagation along the surface of the ground can be affected by the roughness of the ground surface and the direction of the wind. The effects of the ground surface and the wind can be formulated in terms of the ground coefficient and the noise source parameter. Upward and downward conditions can also be addressed by considering the direction of the wind. The ground coefficient and the noise source parameter are estimated using the measured noise levels of two points under particular environmental condition, and the noise levels of arbitrary points under the same environmental condition can be estimated. The proposed method can be utilized to estimate the noise level of specific noise environment and its validity was confirmed with the results of actual field measurement.

  • PDF