• Title/Summary/Keyword: Roughness Function

Search Result 402, Processing Time 0.033 seconds

Magnetotransport Properties of Co-Fe/Al-O/Co-Fe Tunnel Junctions Oxidized with Microwave Excited Plasma

  • Nishikawa, Kazuhiro;Orata, Satoshi;Shoyama, Toshihiro;Cho, Wan-Sick;Yoon, Tae-Sick;Tsunoda, Masakiyo;Takahashi, Migaku
    • Journal of Magnetics
    • /
    • v.7 no.3
    • /
    • pp.63-71
    • /
    • 2002
  • Three fabrication techniques for forming thin barrier layer with uniform thickness and large barrier height in magnetic tunnel junction (MTJ) are discussed. First, the effect of immiscible element addition to Cu layer, a high conducting layer generally placed under the MTJ, is investigated in order to reduce the surface roughness of the bottom ferromagnetic layer, on which the barrier is formed. The Ag addition to the Cu layer successfully realizes the smooth surface of the ferromagnetic layer because of the suppression of the grain growth of Cu. Second, a new plasma source, characterized as low electron energy of 1 eV and high density of $10^{12}$ $cm^{-3}$, is introduced to the Al oxidation process in MTJ fabrication in order to reduce damages to the barrier layer by the ion-bombardment. The magnetotransport properties of the MTJs are investigated as a function of the annealing temperature. As a peculiar feature, the monotonous decrease of resistance area product (RA) is observed with increasing the annealing temperature. The decrease of the RA is due to the decrease of the effective barrier width. Third, the influence of the mixed inert gas species for plasma oxidization process of metallic Al layer on the tunnel magnetoresistance (TMR) was investigated. By the use of Kr-O$_2$ plasma for Al oxidation process, a 58.8 % of MR ratio was obtained at room temperature after annealing the junction at $300{^{\circ}C}$, while the achieved TMR ratio of the MTJ fabricated with usual Ar-$0_2$ plasma remained 48.4%. A faster oxidization rate of the Al layer by using Kr-O$_2$ plasma is a possible cause to prevent the over oxidization of Al layer and to realize a large magnetoresistance.

Error Characteristics of Ship Radiated Noise Estimation by Sea Surface Scattering Effect (해면 산란효과에 의한 선박 방사소음 추정치 오차)

  • Park, Kyu-Chil;Park, Jihyun;Seo, Chulwon;Choi, Jae Yong;Lee, Phil-Ho;Yoon, Jong Rak
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.6
    • /
    • pp.563-573
    • /
    • 2013
  • The ship radiated noise level fluctuates by the interference between direct and reflected paths. The effect of sea surface reflection path on interference depends strongly on sea surface roughness. This paper describes error characteristics of ship acoustic signature estimation by sea surface scattering effect. The coherent reflection coefficient which explains a magnitude of sea surface scattering and its resultant interference acoustic field is analyzed quantitatively as a function of a grazing angle, effective surface height, frequency, source-receiver range and depths of source and receiver. Theoretical interference acoustic field is compared with experimental result for two different sea surfaces and five different frequencies by changing source-receiver range. It is found that both matches well each other and a magnitude of interference acoustic field is decreasing by increasing a grazing angle, effective surface height, frequency, and depths of source and receiver and decreasing source-receiver range. For given experimental conditions, the transmission anomaly which is a bias error of ship acoustic signature estimation, is about a range of 1~3 dB. The bias error of an existing ship radiated noise measurement system is also analyzed considering wind speed, source depth and frequency.

Tool-Setup Monitoring of High Speed Precision Machining Tool

  • Park, Kyoung-Taik;Shin, Young-Jae;Kang, Byung-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.956-959
    • /
    • 2004
  • Recently the monitoring system of tool setting in high speed precision machining center is required for manufacturing products that have highly complex and small shape, high precision and high function. It is very important to reduce time to setup tool in order to improve the machining precision and the productivity and to protect the breakage of cutting tool as the shape of product is smaller and more complex. Generally, the combination of errors that geometrical clamping error of fixing tool at the spindle of machining tool and the asynchronized error of driving mechanism causes that the run-out of tool reaches to 3$^{\sim}$20 times of the thickness of cutting chip. And also the run-out is occurred by the misalignment between axis of tool shank and axis of spindle and spindle bearing in high speed rotation. Generally, high speed machining is considered when the rotating speed is more than 8,000 rpm. At that time, the life time of tool is reduced to about 50% and the roughness of machining surface is worse as the run-out is increased to 10 micron. The life time of tool could be increased by making monitoring of tool-setup easy, quick and precise in high speed machining tool. This means the consumption of tool is much more reduced. And also it reduces the manufacturing cost and increases the productivity by reducing the tool-setup time of operator. In this study, in order to establish the concept of tool-setup monitoring the measuring method of the geometrical error of tool system is studied when the spindle is stopped. And also the measuring method of run-out, dynamic error of tool system, is studied when the spindle is rotated in 8,000${\sim}$60,000 rpm. The dynamic phenomena of tool-setup are analyzed by implementing the monitoring system of rotating tool system and the non-contact measuring system of micro displacement in high speed.

  • PDF

Geometric and mechanical properties evaluation of scaffolds for bone tissue applications designing by a reaction-diffusion models and manufactured with a material jetting system

  • Velasco, Marco A.;Lancheros, Yadira;Garzon-Alvarado, Diego A.
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.4
    • /
    • pp.385-397
    • /
    • 2016
  • Scaffolds are essential in bone tissue engineering, as they provide support to cells and growth factors necessary to regenerate tissue. In addition, they meet the mechanical function of the bone while it regenerates. Currently, the multiple methods for designing and manufacturing scaffolds are based on regular structures from a unit cell that repeats in a given domain. However, these methods do not resemble the actual structure of the trabecular bone which may work against osseous tissue regeneration. To explore the design of porous structures with similar mechanical properties to native bone, a geometric generation scheme from a reaction-diffusion model and its manufacturing via a material jetting system is proposed. This article presents the methodology used, the geometric characteristics and the modulus of elasticity of the scaffolds designed and manufactured. The method proposed shows its potential to generate structures that allow to control the basic scaffold properties for bone tissue engineering such as the width of the channels and porosity. The mechanical properties of our scaffolds are similar to trabecular tissue present in vertebrae and tibia bones. Tests on the manufactured scaffolds show that it is necessary to consider the orientation of the object relative to the printing system because the channel geometry, mechanical properties and roughness are heavily influenced by the position of the surface analyzed with respect to the printing axis. A possible line for future work may be the establishment of a set of guidelines to consider the effects of manufacturing processes in designing stages.

Optical(Interferometric) Measurements of Vapor Deposition Growth Rate and Dew Points in Combustion Gases (빛의 간섭현상을 이용한 증기용착 성장속도 측정법의 실험적 연구)

  • 김상수;송영훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.3
    • /
    • pp.343-348
    • /
    • 1986
  • An optical interference method was developed for measuring rapidly growing and evaporating liquid condensate films (e.g., Na$_{2}$SO$_{4}$, $K_{2}$SO$_{4}$) on solid surface exposed to flowing combustion product gases at film thicknesses well below the onset of complications due to run-off. To develop this optical system, this study investigated the optical parameters (e.g., polarization state, incident angle, target roughness, etc.) Trends for the Na$_{2}$SO$_{4}$(l) and $K_{2}$SO$_{4}$(l) deposition rates as a function of target temperature using this optical measuring system agree with the theoretical prediction of the vapor deposition. This study was able to extend the experimental range for vapor plus condensed phase transport and deposition. While previously unable to measure the evaporation rates interferometrically, these rates are estimated from the results of the investigation of polarization states.

A study on automatic selection of optimal cutting condition on machining in view of economics (기계가공시 분당가공비를 고려한 최적 절삭 조건에 관한 연구)

  • 이길우;이용성
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.113-126
    • /
    • 1992
  • Recently the multi-kind, small-amount manufacturing system has been replacing the mass manufacturing system, and domestic machining inustry also is eager to absorb the new technology because of its high productivity and cost reduction. The optimization of the cutting condition has been a vital problem in the machining industry, which would help increase the productivity and raise the international competitiveness. It is intended in this study to investigate the machining costs per unit time which is essential to the analysis of the optimal cutting condition, to computer the cutting speed that lead to the minimum machining costs and the maximum production to suggest the cutting speed range that enables efficient speed cutting, and to review the machining economy in relation to cutting depth and feed. Also considered are the optimal cutting speed and prodution rated in rrelation with feed. It is found that the minimum-cost cutting speed increases and the efficient cutting speed range is reduced as machining cost per unit time increases since the cutting speed for maximum production remains almost constant. The machining cost is also lowered and the production rate increases as the feed increases, and the feed should be selected to satisfy the required surface roughness. The machining cost and production rate are hardly affected by the cutting depth if the cutting speed stays below 100m/min, however, they are subject to change at larger cutting depth and the high-efficient speed range also is restricted. It can be established an adaptive optimal cutting conditions can be established in workshop by the auto-selection progam for optimal operation. It is expected that this method for choosing the optimal cutting conditions might contribute to the improvement of the productivity and reduced the cost. It is highly recommended to prepare the optimal cutting conditionthus obtained for future use in the programing of G-function of CNC machines. If proper programs that automatically select the optimal cutting conditions should be developed, it would be helpful to the works being done in the machine shops and would result in noticeable production raise and cost reduction.

  • PDF

Effect of the Addition of Propanol to PVC Solution on the Structure of Thin Film and its Surface Property (프로판올 첨가에 따른 PVC 용액의 박막 형성과 표면 특성에 미치는 영향)

  • Park, Jae Nam;Shin, Young Sik;Lee, Won Gyu
    • Applied Chemistry for Engineering
    • /
    • v.26 no.1
    • /
    • pp.35-39
    • /
    • 2015
  • Polyvinylchloride (PVC) thin films having a microporous structure could be prepared by using the solubility difference in solvents. PVC thin film with a water contact angle of $150^{\circ}$ or more was obtained from the PVC solution consisting of the mixture of tetrahydrofuran as a solvent and propanol as a non-solvent. In the drying process of dip-coated PVC film, the increase of drying temperature reduced the tendency of roughened surface, which led the decrease of surface hydrophobicity. As the addition of propanol in the solution with 1 wt% PVC increased, the uniformity of surface roughness was improved. In the case of oxygen plasma treatments, even though the surface structure of PVC thin film was not notably changed, the surface property of the film was changed from the super-hydrophobicity to hydrophilicity as a function of the plasma exposing time.

Microstructures and Electrical Properties of Zr Modified $({Ba_{1-x}},{Sr_x})TiO_3$ Thin Films (Zr이 첨가된 $({Ba_{1-x}},{Sr_x})TiO_3$ 박막의 미세구조와 전기적 성질)

  • Park, Sang-Sik
    • Korean Journal of Materials Research
    • /
    • v.10 no.9
    • /
    • pp.607-611
    • /
    • 2000
  • Zr modified $(Ba_{1-x},Sr_x)TiO_3$ thin films as capacitor for high density DRAM were deposited by r.f. magnetron sputtering. The films deposited at various chamber pressure exhibited a polycrystalline structure. The Zr/Ti ratio of the films increased significantly with decreasing the chamber pressure and this variation affected the microstructure and surface roughness of films When chamber pressure increased dielectric constant of the films effected due to decrease of Zr. The thin films prepared in this study show dielectric constant of 380 to 525 at 100KHz. The variation of capacitance and polarization measured as a function of bias voltage suggested that all films were paraelectric phases. Leakage current exhibited smaller value as chamber pressure decrease and the leakage current density of the films deposited above 10mTorr was $10^{-7}~10^{-8}A/cm^2$ order at 200kV/cm. $(Ba_{1-x},Sr_x)(Ti_{1-y},Zr_y)O_3$ thin films in this study appeared to be potential thin film capacitor for high density DRAM.

  • PDF

Fabrication of (PDDA/SiO2) Thin Film by an Applying Voltage Layer-By-Layer Self Assembly Method (전압인가 LBL법을 이용한 (PDDA/SiO2) 박막 제조)

  • Park, Jong-Guk;Kyung, Kyu-Hong;Lee, Mi-Jai;Hwang, Jonghee;Lim, Tae-Young;Kim, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.24 no.12
    • /
    • pp.715-719
    • /
    • 2014
  • (PDDA/$SiO_2$) thin films that consisted of positively charged poly (diallyldimethylammonium chloride) (PDDA) and negatively charged $SiO_2$ nanoparticles were fabricated on a glass substrate by an applying voltage layer-by-layer (LBL) self-assembly method. In this study, the microstructure and optical properties of the (PDDA/$SiO_2$) thin films coated on glass substrate were measured as a function of the applied voltage on the Pt electrodes. When 1.0 V was applied to a Pt electrode in a PDDA and $SiO_2$ solution, the thickness of the $(PDDA/SiO_2)_{10}$ thin film increased from 79 nm to 166 nm. The surface roughness also increased from 15.21 nm to 33.25 nm because the adsorption volume of the oppositely charged PDDA and $SiO_2$ solution increased. Especially, when the voltage was applied to the Pt electrode in the $SiO_2$ solution, the thickness increase of the (PDDA/$SiO_2$) thin film was larger than that obtained when using the PDDA solution. The refractive index of the fabricated (PDDA/$SiO_2$) thin film was ca. n = 1.31~1.32. The transmittance of the glass substrate coated by (PDDA/$SiO_2$)6 thin film with a thickness of 106 nm increased from ca. 91.37 to 95.74% in the visible range.

Tool-Setup Measurement Technology of High Speed Precision Machining Tool (고속 정밀 가공기의 공구셋업 측정기술)

  • 박경택;신영재;강병수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1066-1069
    • /
    • 2004
  • Recently the monitoring system of tool setup in high speed precision machining tool is required for manufacturing products that have highly complex and small shape, high precision and high function. It is very important to reduce time to setup tool in order to improve the machining precision and productivity and to protect the breakage of cutting tool as the shape of product is smaller and more complex. Generally, the combination of errors that geometrical clamping error of fixing tool at the spindle of machining center and the asynchronized error of driving mechanism causes that the run-out of tool reaches to 3∼20 times of the thickness of cutting chip. And also the run-out is occurred by the misalignment between axis of tool shank and axis of spindle and spindle bearing in high speed rotation. Generally, high speed machining is considered when the rotating speed is more than 8,000 rpm. At that time, the life time of tool is reduced to about 50% and the roughness of machining surface is worse as the run-out is increased to 10 micron. The life time of tool could be increased by making monitoring of tool-setting easy, quick and precise in high speed machining center. This means the consumption of tool is much more reduced. And also it reduces the manufacturing cost and increases the productivity by reducing the tool-setup time of operator. In this study, in order to establish the concept of tool-setting monitoring the measuring method of the geometrical error of tool system is studied when the spindle is stopped. And also the measuring method of run-out, dynamic error of tool system, is studied when the spindle is rotated in 8,000 ∼ 60,000 rpm. The dynamic phenomena of tool-setup is analyzed by implementing the monitoring system of rotating tool system and the noncontact measuring system of micro displacement in high speed.

  • PDF