• Title/Summary/Keyword: Rough set

Search Result 260, Processing Time 0.022 seconds

Classify Layer Design for Navigation Control of Line-Crawling Robot : A Rough Neurocomputing Approach

  • Ahn, Taechon;Peters, James F.;Borkowski, Maciey
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.68.1-68
    • /
    • 2002
  • This paper considers a rough neurocomputing approach to the design of the classify layer of a Brooks architecture for a robot control system. The Paradigm for neurocomputing that has its roots in rough set theory, and works well in cases where there is uncertainty about the values of measurements used to make decisions. In the case of the line-crawling robot (LCR) described in this paper, rough neurocomputing is used to classify sometimes noisy signals from sensors. The LCR is a robot designed to crawl along high-voltage transmission lines where noisy sensor signals are common because of the electromagnetic field surrounding conductors. In rough neurocomputing, training a network of neurons...

  • PDF

A Diagnostic Feature Subset Selection of Breast Tumor Based on Neighborhood Rough Set Model (Neighborhood 러프집합 모델을 활용한 유방 종양의 진단적 특징 선택)

  • Son, Chang-Sik;Choi, Rock-Hyun;Kang, Won-Seok;Lee, Jong-Ha
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.21 no.6
    • /
    • pp.13-21
    • /
    • 2016
  • Feature selection is the one of important issue in the field of data mining and machine learning. It is the technique to find a subset of features which provides the best classification performance, from the source data. We propose a feature subset selection method using the neighborhood rough set model based on information granularity. To demonstrate the effectiveness of proposed method, it was applied to select the useful features associated with breast tumor diagnosis of 298 shape features extracted from 5,252 breast ultrasound images, which include 2,745 benign and 2,507 malignant cases. Experimental results showed that 19 diagnostic features were strong predictors of breast cancer diagnosis and then average classification accuracy was 97.6%.

Rough Set-Based Approach for Automatic Emotion Classification of Music

  • Baniya, Babu Kaji;Lee, Joonwhoan
    • Journal of Information Processing Systems
    • /
    • v.13 no.2
    • /
    • pp.400-416
    • /
    • 2017
  • Music emotion is an important component in the field of music information retrieval and computational musicology. This paper proposes an approach for automatic emotion classification, based on rough set (RS) theory. In the proposed approach, four different sets of music features are extracted, representing dynamics, rhythm, spectral, and harmony. From the features, five different statistical parameters are considered as attributes, including up to the $4^{th}$ order central moments of each feature, and covariance components of mutual ones. The large number of attributes is controlled by RS-based approach, in which superfluous features are removed, to obtain indispensable ones. In addition, RS-based approach makes it possible to visualize which attributes play a significant role in the generated rules, and also determine the strength of each rule for classification. The experiments have been performed to find out which audio features and which of the different statistical parameters derived from them are important for emotion classification. Also, the resulting indispensable attributes and the usefulness of covariance components have been discussed. The overall classification accuracy with all statistical parameters has recorded comparatively better than currently existing methods on a pair of datasets.

Uncertainty Improvement of Incomplete Decision System using Bayesian Conditional Information Entropy (베이지언 정보엔트로피에 의한 불완전 의사결정 시스템의 불확실성 향상)

  • Choi, Gyoo-Seok;Park, In-Kyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.6
    • /
    • pp.47-54
    • /
    • 2014
  • Based on the indiscernible relation of rough set, the inevitability of superposition and inconsistency of data makes the reduction of attributes very important in information system. Rough set has difficulty in the difference of attribute reduction between consistent and inconsistent information system. In this paper, we propose the new uncertainty measure and attribute reduction algorithm by Bayesian posterior probability for correlation analysis between condition and decision attributes. We compare the proposed method and the conditional information entropy to address the uncertainty of inconsistent information system. As the result, our method has more accuracy than conditional information entropy in dealing with uncertainty via mutual information of condition and decision attributes of information system.

Uncertainty Measurement of Incomplete Information System based on Conditional Information Entropy (조건부 정보엔트로피에 의한 불완전 정보시스템의 불확실성 측정)

  • Park, Inkyoo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.2
    • /
    • pp.107-113
    • /
    • 2014
  • The derivation of optimal information from decision table is based on the concept of indiscernibility relation and approximation space in rough set. Because decision table is more likely to be susceptible to the superposition or inconsistency in decision table, the reduction of attributes is a important concept in knowledge representation. While complete subsets of the attribute's domain is considered in algebraic definition, incomplete subsets of the attribute's domain is considered in information-theoretic definition. Therefore there is a marked difference between algebraic and information-theoretic definition. This paper proposes a conditional entropy using rough set as information theoretical measures in order to deduct the optimal information which may contain condition attributes and decision attribute of information system and shows its effectiveness.

Developing Pairs Trading Rules for Arbitrage Investment Strategy based on the Price Ratios of Stock Index Futures (주가지수 선물의 가격 비율에 기반한 차익거래 투자전략을 위한 페어트레이딩 규칙 개발)

  • Kim, Young-Min;Kim, Jungsu;Lee, Suk-Jun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.4
    • /
    • pp.202-211
    • /
    • 2014
  • Pairs trading is a type of arbitrage investment strategy that buys an underpriced security and simultaneously sells an overpriced security. Since the 1980s, investors have recognized pairs trading as a promising arbitrage strategy that pursues absolute returns rather than relative profits. Thus, individual and institutional traders, as well as hedge fund traders in the financial markets, have an interest in developing a pairs trading strategy. This study proposes pairs trading rules (PTRs) created from a price ratio between securities (i.e., stock index futures) using rough set analysis. The price ratio involves calculating the closing price of one security and dividing it by the closing price of another security and generating Buy or Sell signals according to whether the ratio is increasing or decreasing. In this empirical study, we generate PTRs through rough set analysis applied to various technical indicators derived from the price ratio between KOSPI 200 and S&P 500 index futures. The proposed trading rules for pairs trading indicate high profits in the futures market.

A Design of Disease Rule Creation Scheme for Disease Management in Healthcare System (헬스 케어 시스템에서 질병 관리를 위한 질병 규칙 생성 기법 설계)

  • Lee, Byung-Kwan;Jung, INa;Jeong, Eun-Hee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.965-967
    • /
    • 2013
  • The paper proposed the DRCS(Disease Rule Creation Scheme) which generates the disease rules for efficient disease management in Healthcare system. The DRCS uses basically Rough Set Theory and computes support between each attributes and decision attributes. It creates the disease rules that judges disease after it removes the attribute which is the lowest support. Therefore, it reduces the number of disease rules and improves the exactness, compared with C4.5 algorithm.

  • PDF

A Study on the YCbCr Color Model and the Rough Set for a Robust Face Detection Algorithm (강건한 얼굴 검출 알고리즘을 위한 YCbCr 컬러 모델과 러프 집합 연구)

  • Byun, Oh-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.7
    • /
    • pp.117-125
    • /
    • 2011
  • In this paper, it was segmented the face color distribution using YCbCr color model, which is one of the feature-based methods, and preprocessing stage was to be insensitive to the sensitivity for light which is one of the disadvantages for the feature-based methods by the quantization. In addition, it has raised the accuracy of image synthesis with characteristics which is selected the object of the most same image as the shape of pattern using rough set. In this paper, the detection rates of the proposed face detection algorithm was confirmed to be better about 2~3% than the conventional algorithms regardless of the size and direction on the various faces by simulation.

A Clustering Algorithm for Sequence Data Using Rough Set Theory (러프 셋 이론을 이용한 시퀀스 데이터의 클러스터링 알고리즘)

  • Oh, Seung-Joon;Park, Chan-Woong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.2
    • /
    • pp.113-119
    • /
    • 2008
  • The World Wide Web is a dynamic collection of pages that includes a huge number of hyperlinks and huge volumes of usage informations. The resulting growth in online information combined with the almost unstructured web data necessitates the development of powerful web data mining tools. Recently, a number of approaches have been developed for dealing with specific aspects of web usage mining for the purpose of automatically discovering user profiles. We analyze sequence data, such as web-logs, protein sequences, and retail transactions. In our approach, we propose the clustering algorithm for sequence data using rough set theory. We present a simple example and experimental results using a splice dataset and synthetic datasets.

  • PDF

Customer Personalized System of eCRM Using Web Log Mining and Rough Set

  • Lee, Jae-Hoon;Chung, Il-Yong;Lee, Sung-Joo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.29-32
    • /
    • 2006
  • In this paper, we propose a customer personalized system that presents the web pages to users which are customized to their individuality. It analyzes the action of users who visit the shopping mall, and preferentially supplies the necessary information to them. When they actually buy some items, it forecasts the users' access pattern to web site and their following purchasable items and improves their web pare on the bases of their individuality. It reasons the relation among the web documents and among the items by using the log data of web server and the purchase information of DB. For reasoning it employs Rough Set, which is a method that searches the association rule and offers most suitable cases by reduces cases. It reasons the web pages by considering the users' access pattern and time by using the web log and reasons the users' purchase pattern by using the purchase information of DB. On the basis of the relation among them, it appends the related web pages to link of users' web pages and displays the inferred goods on users' web pages.

  • PDF