• Title/Summary/Keyword: Rough set

Search Result 260, Processing Time 0.034 seconds

Sketch-based Solid Prototype Modeling System with Dual Data Structure of Point-set Surfaces and Voxels

  • Takeuchi, Ryota;Watanabe, Taichi;Yamakawa, Soji
    • International Journal of CAD/CAM
    • /
    • v.11 no.1
    • /
    • pp.18-26
    • /
    • 2011
  • This paper proposes a new solid-shape modeling system based on a lusterware-image illustration. The proposed method reconstructs a three dimensional solid shape from a set of rough sketches that are typically drawn in the early stages of the design process. The sketches do not have to be strictly accurate, and this tolerance to the roughness of the input sketches is one of the major advantages of the proposed method. The proposed system creates an initial shape based on the silhouette of the input lusterware-images. Then the user can edit the initial shape with intuitive cutting and dishing-up operations, which are based on sketching user interface. To achieve the goal, the system retains the geometric model with two representations: a point-set data and a volume data. This dual data structure allows the program to create an initial shape from the input images with little computational cost, and the user can apply cutting and dishing-up operations without substantially increasing computational and memory requirements. In this research, we have tested the proposed system by reconstructing solid models of some mechanical parts from rough sketches. The experimental results indicate that the proposed method is useful for the prototyping of a solid shape.

  • PDF

A Study on Reducsion of CBR Using Rough set (Rough 집합을 이용한 사례베이스에 관한 연구)

  • 최성혜;정환묵
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.340-343
    • /
    • 1996
  • 실세계에서 존재하는 대부분의 지식은 다양한 패턴들로 구성되어 있다. 본 논문에서는 사례베이스 추론(Case-Based Reasoning : CBR)에서 다중의 의미를 갖는 불확실한 지식을 쉽게 표현할 수 있는 러프 집합을 이용하여 지식의 함축의 의미를 갖는 지식을 간략화하는 방법을 제안한다. 전문가의 지식 구조를 명확화 하는데는 많은 노력이 필요하고 지식획득의 병목현상이 일어난다. 이러한 문제점을 해결하기 위해 많은 사례의 수를 러프 집합의 성질을 이용하여 사례를 동치 클래스로 분류하여 사례의 수를 감소하므로써 CBR의 기능을 향상시킨다.

  • PDF

The Analysis of Significance of the Reusability Decision Metrics using Rough Set

  • Park, Wan-Kyoo;Na, Young-Nam;Lee, Sung-Joo;Chung, Hwan-Mook
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.302-307
    • /
    • 1998
  • Software reuse is a well-known method to increase the productivity of software, nevertheless it is not employed well on real world. One of the important factors that this problem occurs is programers' distrust in the existing components. Therefore in this paper, to increase the reliability of reusability decision, we proposed a method which can analyze significance of the reusability decision metrics using Rough Set.

  • PDF

The Method of Effective Inference Using Rough Set and Fuzzy Naive Bayes Theory (러프집합과 퍼지 네이브 베이스 이론을 이용한 효율적인 추론 방법)

  • Hwang Jeong-Sik;Son Chang-Sik;Chung Hwan-Mook
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.117-120
    • /
    • 2005
  • 퍼지 규칙 기반 시스템에서 분류 및 경계를 결정하기 위한 방법으로 퍼지 규칙을 학습하는 다양한 방법들이 제안되고 있다. 그리고 추론 규칙간의 상관성을 고려하여 불필요한 속성을 제거함으로써 좀 더 효율적인 추론 결과를 얻을 수 있다. 따라서 본 논문에서는 퍼지 규칙 기반 시스템에서 각 규칙에 따른 결정 테이블를 작성하고 러프집합을 이용하여 불필요한 속성을 제거하였으며 규칙의 확신도에 퍼지 네이브 베이스 이론을 적용한 추론 방법을 제안한다.

  • PDF

Rule Induction Considering Implication Relations Between Conclusions

  • Inuiguchi, Masahiro;Inoue, Masanori;Kusunoki, Yoshifumi
    • Industrial Engineering and Management Systems
    • /
    • v.10 no.1
    • /
    • pp.65-73
    • /
    • 2011
  • In rough set literatures, methods for inducing minimal rules from a given decision table have been proposed. When the decision attribute is ordinal, inducing rules about upward and downward unions of decision classes is advantageous in the simplicity of obtained rules. However, because of independent applications of the rule induction method, inclusion relations among upward/downward unions in conclusion parts are not inherited to the condition parts of obtained rules. This non-inheritance may debase the quality of obtained rules. To ensure that inclusion relations among conclusions are inherited to conditions, we propose two rule induction approaches. The performances of the proposed approaches considering the inclusion relations between conclusions are examined by numerical experiments.

Adaptive Granule Control with the Aid of Rough Set Theory for a HVDC system (러프 셋 이론을 사용한 HVDC 시스템을 위한 적응 Granule 제어)

  • Wang, Zhongxian;Yang, Jeung-Je;Ahn, Tae-Chon
    • Proceedings of the KIEE Conference
    • /
    • 2006.11a
    • /
    • pp.144-147
    • /
    • 2006
  • A proportional intergral (PI) control strategy is commonly used for constant current and extinction angle control in a HVDC (High Voltage Direct Current) system. A PI control strategy is based on a stactic design where the gains of a PI controller are fixed. Since the response of a HVDC plant dynamically changes with variations in the operation point a PI controller performance is far from optimum. The contribution of this paper is the presentation of the design of a rough set based, fuzzy adaptive control scheme. Experimental results that compare the performance of the adaptive control and PI control schemes are also given.

  • PDF

Smart Control System Using Fuzzy and Neural Network Prediction System

  • Kim, Tae Yeun;Bae, Sang Hyun
    • Journal of Integrative Natural Science
    • /
    • v.12 no.4
    • /
    • pp.105-115
    • /
    • 2019
  • In this paper, a prediction system is proposed to control the brightness of smart street lamps by predicting the moving path through the reduction of consumption power and information of pedestrian's past moving direction while meeting the function of existing smart street lamps. The brightness of smart street lamps is adjusted by utilizing the walk tracking vector and soft hand-off characteristics obtained through the motion sensing sensor of smart street lamps. In addition, the motion vector is used to analyze and predict the pedestrian path, and the GPU is used for high-speed computation. Pedestrians were detected using adaptive Gaussian mixing, weighted difference imaging, and motion vectors, and motions of pedestrians were analyzed using the extracted motion vectors. The preprocessing process using linear interpolation is performed to improve the performance of the proposed prediction system. Fuzzy prediction system and neural network prediction system are designed in parallel to improve efficiency and rough set is used for error correction.

Design of Fault Diagnosis Expert System Using Improved Fuzzy Cognitive Maps and Rough Set Based Rule Minimization

  • 이종필;변증남
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.315-320
    • /
    • 1997
  • Rule minimization technique adapted from rough set theory was applied to remove redundant knowledge which is not necessary to make a knowledge base. New algorithm to diagnose fault using Improved Fuzzy Cognitive Maps(I-FCMs), and Fuzzy Associative Memory(FAM) is proposed. I-FCM[22] is superior to gathering knowledge from many experts and descries dynamic behaviors of systems very well. I-FCM is not only a knowledge base, but also a inference engine. FAM has learning capability like neural network[12]. Rule minimization and composition of I-FCM and FAM make it possible to construct compact knowledge base and breaks the border between inference engine and knowledge base.

  • PDF

Rule Generation using Rough set and Hierarchical Structure (러프집합과 계층적 구조를 이용한 규칙생성)

  • Kim, Ju-Young;Lee, Chul-Heui
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.521-524
    • /
    • 2002
  • This paper deals with the rule generation from data for control system and data mining using rough set. If the cores and reducts are searched for without consideration of the frequency of data belonging to the same equivalent class, the unnecessary attributes may not be discarded, and the resultant rules don't represent well the characteristics of the data. To improve this, we handle the inconsistent data with a probability measure defined by support, As a result the effect of uncertainty in knowledge reduction can be reduced to some extent. Also we construct the rule base in a hierarchical structure by applying core as the classification criteria at each level. If more than one core exist, the coverage degree is used to select an appropriate one among then to increase the classification rate. The proposed method gives more proper and effective rule base in compatibility and size. For some data mining example the simulations are performed to show the effectiveness of the proposed method.

  • PDF

Ensemble of Classifiers Constructed on Class-Oriented Attribute Reduction

  • Li, Min;Deng, Shaobo;Wang, Lei
    • Journal of Information Processing Systems
    • /
    • v.16 no.2
    • /
    • pp.360-376
    • /
    • 2020
  • Many heuristic attribute reduction algorithms have been proposed to find a single reduct that functions as the entire set of original attributes without loss of classification capability; however, the proposed reducts are not always perfect for these multiclass datasets. In this study, based on a probabilistic rough set model, we propose the class-oriented attribute reduction (COAR) algorithm, which separately finds a reduct for each target class. Thus, there is a strong dependence between a reduct and its target class. Consequently, we propose a type of ensemble constructed on a group of classifiers based on class-oriented reducts with a customized weighted majority voting strategy. We evaluated the performance of our proposed algorithm based on five real multiclass datasets. Experimental results confirm the superiority of the proposed method in terms of four general evaluation metrics.