• Title/Summary/Keyword: Rotordynamics

Search Result 102, Processing Time 0.036 seconds

Directional ARMAX Model-Based Approach for Rotordynamics Identification, Part 2 : Performance Evaluations and Applications (방향 시계열에 의한 회전체 동특성 규명 : (II) 성능 평가 및 응용)

  • 박종포;이종원
    • Journal of KSNVE
    • /
    • v.9 no.1
    • /
    • pp.60-69
    • /
    • 1999
  • In the first paper of this research$^{(1)}$. a new time series method. directional ARMAX (dARMAX) model-based approach. was proposed for rotordynamics identification. The dARMAX processes complex-valued signals, utilizing the complex modal testing theory which enables the separation of the backward and forward modes in the two-sided frequency domain and makes effective modal parameter identification possible. to account for the dynamic characteristics inherent in rotating machinery. In this second part. an evaluation of its performance characteristics based on both simulated and experimental data is presented. Numerical simulations are carried out to show that the method. a complex time series method. successfully implements the complex modal testing in the time domain. and it is superior in nature to the conventional ARMAX and the frequency-domain methods in the estimation of the modal parameters for isotropic and weakly anisotropic rotor systems. Experiments are carried out to demonstrate the applicability and the effectiveness of the dARMAX model-based approach, following the proposed fitting strategy. for the rotordynamics identification.

  • PDF

Comparison of Approximation and Rotordynamics Solutions for Design of a High Speed Air Spindle (고속 공기 스핀들 설계를 위한 근사해석과 회전체동역학의 비교)

  • Lee, Jae Hyeok;Park, Sang-Shin
    • Tribology and Lubricants
    • /
    • v.35 no.5
    • /
    • pp.310-316
    • /
    • 2019
  • This paper presents two methods for designing a high-speed air spindle operated over the rotational speed of 50,000 rpm. The first method is an approximate method, which assumes a symmetric spindle shape even though it is not symmetric in reality. The second is an analysis of rotordynamics using beam and solid models. The approximate method can be used to calculate the bearing load capacities, stiffness and damping coefficients, stability of the shaft system, and response of the forced excitation from the unbalanced mass. Designers can use this method to determine the dimensions of the desired spindle at the first stage of the design. The more detailed behavior of the spindle can be calculated using the rotordynamics theory using beam and solid models based on the Finite Element Method. In this paper, a spindle, with two air bearings, one motor at the end, and two air thrust bearings, is newly developed. The solutions from the two rotordynamics theories are compared with the solution obtained using the approximate method. The three calculations are in agreement, and the procedure for the design of a spindle system, supported on the externally pressurized air bearings, ispresented and discussed.

Study on the Oil-free Turbocharger Supported by Air Foil Bearing (공기 포일 베어링으로 지지되는 무급유 터보 과급기 회전체 설계에 대한 연구)

  • Lee, Yong-Bok;Kim, Tae-Ho;Kim, Chang-Ho;Lee, Nam-Soo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.453-458
    • /
    • 2002
  • The feasibility study on supporting a turbocharger rotor on air foil bearing is investigated. Based on finite difference method and Newton-Raphson method, the static equilibrium position of a turbocharger rotor is predicted. And using finite difference method and perturbation method, dynamic characteristics of air foil bearings are calculated. Rotordynamic analysis is performed by finite element method, with collaboration of calculated stiffness and damping of foil bearing. The effect of compliance and clearance of bump foil bearing on the oil-free turbocharger is investigated in terms of rotordynamics. And the critical speeds, eccentricity ratio, vibration amplitude, and stability are considered. It is demonstrated that foil bearings offer a rlausible replacement for oil-lubricated bearings in turbocharger.

  • PDF

Effect of Seal Wear on the Rotordynamics of a Multistage Turbine Pump (시일의 마멸이 다단 터빈 펌프 동특성에 미치는 영향)

  • 김영철;이동환;이봉주
    • Journal of KSNVE
    • /
    • v.7 no.6
    • /
    • pp.1015-1023
    • /
    • 1997
  • Rotordynamic analysis of a multistage turbine pump using finite element method is performed to investigate the effects of seal wear on its system behavior. Stiffness and damping coefficents of the 2-axial grooved bearing are obtained as functions of rotating speed. Stiffness and damping coefficients of plane annuler seals are calculated as functions of rotating speed as well as seal clearance of seals become larger, these stiffness and damping coefficients decrease drastically so that there can be significant changes in whirl natural frequencies and damping characteristics of the pump rotor system. Although a pump is designed to operate with a sufficient seperation margin from the 1st critical speed, seal wear due to long operation may cause a sudden increase in vibration amplitude by resonance shift and reduce seal damping capability.

  • PDF

Directional ARMAX Model-Based Approach for Rotordynamics Identification, Part 1 : Modeling and Analysis (방향 시계열에 의한 회전체 동특성 규명: (I) 모델링 및 해석)

  • 박종포;이종원
    • Journal of KSNVE
    • /
    • v.8 no.6
    • /
    • pp.1103-1112
    • /
    • 1998
  • A new time series method, directional ARMAX (dARMAX) model-based approach. is proposed for rotor dynamics identification. The dARMAX processes complex-valued signals, utilizing the complex modal testing theory which enables the separation of the backward and forward modes in the two-sided frequency domain and makes effective modal parameter identification possible, to account for the dynamic characteristics inherent in rotating machinery. This paper is divided into two parts : The dARMAX modeling, analysis. and fitting strategy are presented in the first part. whereas a evaluation of its performance characteristics based on both simulated and experimental data is presented in the second.

  • PDF

Characteristics for rotordynamics of laminated rotor supported by rolling bearings (구름베어링으로 지지된 적층로터의 로터다이나믹 특성)

  • Kim, Yeong-Chun;Park, Chul-Hyun;Park, Hei-Joo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.822-825
    • /
    • 2002
  • A lot of rotating machinery are generally used in industrial field and the electrical machinery such as the motor and generator account for the most of the part. Generally motor and generator have electrical loss because of eddy current. So silicon steel sheets are used in order to reduce the electrical loss and furthermore laminated rotor is used for motor and generator to eliminate the electrical loss and heat generation. However, the more high speed, large scale and high precision of the system, the more important to estimate the critical speed. In this paper verifies the variation of the critical speeds in accordance with the variation of the pressing force of lamination plate for the rotor which is supported by ball bearing with the experimental data as well.

  • PDF

Characteristics for rotordynamics of laminated rotor supported by rolling bearings (구름베어링으로 지지된 적층로터의 로터다이나믹 특성)

  • Kim, Yeong-Chun;Park, Cheol-Hyun;Park, Hei-Joo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.381.1-381
    • /
    • 2002
  • The A lot of rotating machinery are generally used in industrial field and the electrical machinery such as the motor and generator account for the most of the part. Generally motor and generator have electrical loss because of eddy current. So silicon steel sheets are used in order to reduce the electrical loss and furthermore laminated rotor is used for motor and generator to eliminate the electrical loss and heat generation. (omitted)

  • PDF

Leakage and Dynamic Characteristics of High Pressure Multi-Stage Pump Seals (고압 다단 펌프 시일의 누설 및 동특성에 관한 연구)

  • 곽현덕;이용복;김창호;이봉주
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.744-749
    • /
    • 2001
  • As related to rotordynamics, dynamic characteristics of the wear ring seal in high pressure multi-stage pump is calculated in the cases of labyrinth, damper and helically grooved types. The. results show that the labyrinth seal type has superior performance in the view point of leakage. However, in terms of rotordynamics view point, the damper seal type gains acceptable separate margin in critical speed range, while it has slightly inferior leakage performance compared to labyrinth seal type.

  • PDF

Application of Foil Gas Bearing to the 38kW, 100000 RPM Class High Speed Motor (38kW, 100000 RPM 고속모터에 대한 포일 가스 베어링 응용 개발)

  • Kim, Kyeong-Su;Park, Ki-Cheol;Kim, Seung-Woo;Lee, In
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.127-131
    • /
    • 2003
  • Foil gas bearing is a noncontact bearing operated by coupled interaction between hydrodynamic pressure of viscous fluid and elastic deformation of foil structure. It has valuable advantages, such as low power loss, long life, oilless environment and low vibration, over conventional bearings for the high speed applications. A high speed BLDC motor adopting the foil bearing has been developed. It is designed to have 38㎾ power at 100,000 RPM for a cryogenic cooler whose operating fluid is neon. In this paper, structural development details especially for the foil gas bearing and rotordynamics are presented.

  • PDF

Dynamic Analysis of the Small-size Gas Turbine Engine Rotor Using Commercial S/W and its Limitations (상용 S/W를 이용한 소형가스터빈엔진 회전체의 동적 구조해석 및 검증)

  • Chung, Hyuk-Jin;Lee, Chong-Won;Hong, Seong-Wook;Yoo, Tae-Gyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.797-803
    • /
    • 2009
  • The accurate prediction of dynamic characteristics of high speed rotors, such as gas turbines, is important to avoid the possibility of operating the machinery near the critical speeds or unstable speed regions. However, the dynamic analysis methods and softwares for gas turbines have been developed in the process of producing many gas turbines by manufacturers and most of them have seldom been disclosed to the public. Recently, commercial FEM softwares, such as SAMCEF, ANSYS and NASTRAN, started supporting some rotordynamics analysis modules based on 3-D finite elements. In this paper, the dynamic analysis method using commercial S/W, especially ANSYS, is attempted for the small-size gas turbine engine rotor, and the analysis capability and limitations of its rotordyamics module are evaluated for further improvement of the module. As the preliminary procedure, the rotordyamic analysis capability of ANSYS was tested and evaluated with the reference models of the well-known dynamics. The limitations in application of the rotordynamics module were then identified. Under the current capability and limitations of ANSYS, it is shown that Lee diagram, a new frequency-speed diagram enhanced with the concept of $H{\infty}$ in rotating machinery, can be indirectly obtained from FRFs computed from harmonic response analysis of ANSYS. Finally, it is demonstrated based on the modeling and analysis method developed in the process of the S/W verification that the conventional Campbell diagram, Lee diagram, mode shapes and critical speeds of the small-size gas turbine engine rotor can be computed using the ANSYS rotordynamics module.

  • PDF