• Title/Summary/Keyword: Rotorcraft Vibration Reduction

Search Result 6, Processing Time 0.022 seconds

Vibratory Loads Reduction of a Coaxial Rotorcraft Using Individual Blade Control Scheme (개별 블레이드 제어(IBC) 기법을 이용한 동축반전 회전익기의 진동하중 억제에 관한 연구)

  • Hong, Seonghyun;You, Younghyun;Jung, Sung Nam;Kim, Do-Hyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.5
    • /
    • pp.364-370
    • /
    • 2019
  • In this paper, an individual blade control (IBC) methodology is applied to find the best input scenario for vibratory hub loads reduction of XH-59A co-axial rotorcraft in high speed flight. A comprehensive aeromechanics analysis code CAMRAD II is employed to analyze the aircraft. A parametric study is conducted for optimum IBC inputs leading to the maximum vibration reduction. Numerical results demonstrate that up to 50% reduction in the hub vibration index is obtained for an IBC input at 3/rev frequency with the amplitude and phase angle of 0.5 deg. and 300 deg., respectively. The upper rotor exhibits as much as 6% more vibration reduction as compared to that of the lower rotor due to a clean inflow characteristic of the rotor. It is found that further vibration reduction gain is reached for IBC inputs with advancing-side only control. The hub vibration becomes reduced by up to 17% in reference to that with full rotor disk control. It is noted that the additional gain is obtained with significantly less power input with the advancing-side only control.

Kinematic design improvement and validation of ATF(Active Trailing-edge Flap) for helicopter vibration reduction (헬리콥터의 진동하중 저감을 위한 능동 뒷전플랩의 기구학적 설계 개선 및 검증)

  • Kang, JungPyo;Eun, WonJong;Lim, JaeHoon;Visconti, Umberto;Shin, SangJoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.916-921
    • /
    • 2014
  • In this paper, an improved small-scaled blade prototype was designed with the flap-driving mechanism classified as an active vibration reduction method, in order to reduce vibratory load in the helicopter. In detail, the previous Active Trailing-Edge Flap based on piezoelectric actuator, called SNUF(Seoul National University Flap), failed to achieve the target value (${\pm}4^{\circ}$) of the flap deflection angle. Therefore, the flap-driving mechanism design was improved, and a new piezoactuator was selected to accomplish the target value of the flap deflection angle in both static and rotating situations.

  • PDF

Development of European Rotorcraft in 21st Century (21세기 유럽의 회전익 개발 동향 분석)

  • Oh, Sejong;Park, Donghun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.8
    • /
    • pp.679-686
    • /
    • 2018
  • In previous paper[1], the authors had compared the current status of European and US rotorcraft development status. In this paper, more detailed procedures have been studied how the European rotorcraft technologies are developed preparing for 21 st century to be more competitive to US. For the systematic procedure to develop next generation aviation technologies including rotorcraft, the pan-European organization, ACARE, was established, and proposed major research agenda for next generation aviation technologies and businesses. Based on the proposed research agenda, all the R&D programs supported by EU are reorganized to be more efficient and competitive. The procedures for the rotorcraft technologies are, first, cabin noise/vibration reduction program (FRIENDCOPTER), second, core technologies to increase of rotor efficiencies and reduce rotor noise (GRC), and then finally to develop fast/long-range next generation rotorcraft (Fast Rotorcraft). As mentioned in previously, all the R&D procedure has to satisfy basic research agenda especially the environmental impact. With theses procedure, the European rotorcraft business had successful achievements not only in current and future market share, but also preparing for next generation rotorcraft platform such as compound and tilt-rotor rotorcraft satisfying market needs.

Test and Simulation of an Active Vibration Control System for Helicopter Applications

  • Kim, Do-Hyung;Kim, Tae-Joo;Jung, Se-Un;Kwak, Dong-Il
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.3
    • /
    • pp.442-453
    • /
    • 2016
  • A significant source of vibration in helicopters is the main rotor system, and it is a technical challenge to reduce the vibration in order to ensure the comfort of crew and passengers. Several types of passive devices have been applied to conventional helicopters in order to reduce the vibration. In recent years, helicopter manufacturers have increasingly adopted active vibration control systems (AVCSs) due to their superior performance with lower weight compared with passive devices. AVCSs can also maintain their performance over aircraft configuration and flight condition changes. As part of the development of AVCS software for light civil helicopter (LCH) applications, a test bench is constructed and vibration control tests and simulations are performed in this study. The test bench, which represents the airframe, is excited using a pair of counter rotating force generators (CRFGs) and a multiple input single output (MISO) AVCS that consists of three accelerometer sensors and a pair of CRFGs; a filtered-x least mean square (LMS) algorithm is applied for the vibration reduction. First, the vibration control tests are performed with uniform sensor weights; then, the change in the control performance according to changes in the sensor weight is investigated and compared with the simulation results. It is found that the vibration control performance can be tuned through adjusting the weights of the three sensors, even if only one actuator is used.

Review of Active Rotor Control Research in Canada

  • Feszty, Daniel;Nitzsche, Fred
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.2
    • /
    • pp.93-114
    • /
    • 2011
  • The current status of Canadian research on rotor-based actively controlled technologies for helicopters is reviewed in this paper. First, worldwide research in this field is overviewed to put Canadian research into context. Then, the unique hybrid control concept of Carleton University is described, along with its key element, the "stiffness control" concept. Next, the smart hybrid active rotor control system (SHARCS) projected's history and organization is presented, which aims to demonstrate the hybrid control concept in a wind tunnel test campaign. To support the activities of SHARCS, unique computational tools, novel experimental facilities and new know-how had to be developed in Canada, among them the state-of-the-art Carleton Whirl Tower facility or the ability to design and manufacture aeroelastically scaled helicopter rotors for wind tunnel testing. In the second half of the paper, details are provided on the current status of development on the three subsystems of SHARCS, i.e. that of the actively controlled tip, the actively controlled flap and the unique stiffness-control device, the active pitch link.

Structural Design and Analysis upon Active Rotor Blade with Trailing-edge Flap (뒷전 플랩을 장착한 지능형 로터 블레이드의 구조 설계 및 해석)

  • Eun, Won-Jong;Natarajan, Balakumaran;Lee, Jae-Hwan;Shin, Sang-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.6
    • /
    • pp.499-505
    • /
    • 2012
  • Vibratory loads imposed by the rotating blade upon the fuselage has been one of major obstacles in rotorcrafts. A new concept of rotor blade is currently developed to adopt an Active Trailing-edge Flap (ATF) to alleviate such obstacles. The flap is mounted at 65~85% spanwise location from the rotor hub. The nominal rotational speed of the blade is as high as 1,528 RPM, to match the required tip Mach number. Structural integrity is one of the important design aspects to be maintained and monitored in this special type of rotor. This is due to that many detailed components, which drive the flap, are inserted inside the rotating blade. To conduct its structural design and analysis, CAMRAD-II and the one-dimensional beam analysis are used. At the same time, three-dimensional finite element analysis are also used, such as MSC. PATRAN/NASTRAN, in order to analyze the details of the present active blade. As a result, comparable characteristics for the present rotor are predicted by both approaches.