• Title/Summary/Keyword: Rotor position

Search Result 722, Processing Time 0.04 seconds

Vector Control for the Rotor Resistance Compensation of Induction Motor (유도전동기 회전자 저항 보상을 위한 벡터제어)

  • 박현철;이수원;김영민;황종선
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.65-68
    • /
    • 2001
  • In the vector control methods of induction motor, the stator current is divided into the flux and torque component current. By controlling these components respectively, the methods control independently flux and torque as in the DC motor and improve the control effects. To apply the vector control methods, the position of the rotor current is identified. The indirect vector control use the parameters of the machine to identify the position of rotor flux. But due to the temperature rise during machine operation, the variation of rotor resistance degrades the vector control. To solve the problem, the q-axis is aligned to reference frame without phase difference by comparing the real flux component with the reference flux component. Then to compensate the slip, PI controller is used. The proposed method keeps a constant slip by compensating the gain of direct slip frequency when the rotor resistance of induction motor varies. To prove the validations of the proposed algorithm in the paper, computer simulations is executed.

  • PDF

A Rotor Position Estimation of Brushless DC Motors using Neutral Voltage Compensation Method (중성점전압보상 방식을 이용한 브러시리스직류전동기의 회전자위치 추정)

  • Song Joong-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.491-497
    • /
    • 2004
  • This paper presents a new rotor position estimation method for brushless DC motors. It is clear that the estimation error of the rotor position provokes the phase shift angle misaligned between the phase current and the back-EMF waveforms, which causes torque ripple in brushless DC motor drives. Such an estimation error can be reduced with the help of the proposed neutral voltage-based estimation method that is structured in the form of a closed loop observer. A neutral voltage appearing during the normal mode of the inverter operation is found to be an observable and controllable measure, which can be dealt with for estimating an exact rotor position. This neutral voltage is obtained from the DC-link current, the switching logic, and the motor speed values. The proposed algorithm, which can be implemented easily by using a single DC-link current and the motor terminal voltage sensors, is verified by simulation and experiment results.

Sensorless Control of SRM (SRM의 센서리스 구동)

  • Lee Ju-Hyun;Park Sung-Jun;Ahn Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.228-230
    • /
    • 2004
  • This paper describes a new method of detecting rotor position in switched reluctance motor(SRM). Some strategies of position sensorless control methods for the motor include the measurement of phase current and applied pulse voltage in an unexcited phase. The principle of the estimation of a rotor position is based on the detection of inductance by pulse currents. Suggested method is verified by some experimental tests.

  • PDF

Initial Rotor position detecting algorithm of PMSM using incremental encoder with Z pulse. (z신호를 갖는 증분형 엔코더 신호를 이용한 PMSM의 회전자 초기위치 추정 알고리즘)

  • Oh, Hyun-Cheal;Kim, Hag-Wone;Cho, Kwan-Yuhl;Song, Ki-Young;Han, Byung-Moon
    • Proceedings of the KIPE Conference
    • /
    • 2012.11a
    • /
    • pp.21-22
    • /
    • 2012
  • This paper propose initial rotor position detecting algorithm of incremental encoder. The proposed algorithm estimates d-axis initial position of PMSM using 6 step operation. The proposed algorithm is verified by experimentally.

  • PDF

Stepping motor controlling apparatus

  • Le, Ngoc Quy;Jeon, Jae-Wook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1858-1862
    • /
    • 2005
  • Stepping motor normally operates without feedback and may loss the synchronization. This problem can be prevented by using positional feedback. This paper introduces one method for closed loop control of stepping motor and a method for combining full-step control and micro-step control. This combination controlling apparatus can perform position control with high accuracy in a high speed, so that it will not suffer from vibration (or hunting) problem when stopping motor. Controlling apparatus contains a position counter block for detecting rotor position of stepping motor, a driving block for supplying current to windings of stepping motor, a control block for comparing output signal of position counter block with command position (desired position) and outputting current command signal based on deviation between current position and command position of rotor. To output current command signal, the control block refers to a sine wave data table. This table contains value of duty cycle of Pulse Width Modulation signal. As the second object of this paper, the process of building this data table is also presented.

  • PDF

Adaptive Sliding Mode Observer for the Control of Switched Reluctance Motors without Speed and Position Sensors (적응 슬라이딩 모드 관측기를 이용한 SRM의 속도 및 위치 센서 없는 제어)

  • Shin, Jae-Hwa;Yang Iee-Yoo;Kim, Young-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.11
    • /
    • pp.763-770
    • /
    • 2000
  • The speed and position information of the rotor are required in the speed control of SRM(Switched Reluctance Motors). This information is generally provided by shaft encoder or resolver. It is weak in the dusty, high temperature, and EMI environment. Consequntly, much attention has been given to SRM control for eliminationating the position and speed sensors. In this paper, a new estimation algorithm for the rotor position and speed for SRM drives is described. The algorithm is implemented by the sliding mode observer. The stability and robustness of the sliding observer for the parameter variations of the SRM are proved by variable structure control theory. Speed control of the SRM is accomplished by the estimated speed and position. Experiment results verify that the mode observer is able to estimate the speed and position well.

  • PDF

Simple Sensorless Control of Interior Permanent Magnet Synchronous Motor Using PLL Based on Extended EMF

  • Han, Dong Yeob;Cho, Yongsoo;Lee, Kyo-Beum
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.711-717
    • /
    • 2017
  • This paper proposes an improved sensorless control to estimate the rotor position of an interior permanent magnet synchronous motor. A phase-locked loop (PLL) is used to obtain the phase angle of the grid. The rotor position can be estimated using a PLL based on extended electromotive force (EEMF) because the EEMF contains information about the rotor position. The proposed method can reduce the burden of calculation. Therefore, the control period is decreased. The simulation and experimental results confirm the effectiveness and performance of the proposed method.

Development of a Sensorless Drive for Brushless DC Motor (브러시리스 직류 전동기용 센서리스 드라이브 개발에 관한 연구)

  • Yeo, H.G.;Lee, K.W.;Park, J.B.;Kim, T.H.;Huang, Jian;Yoo, Ji-Yoon
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2095-2097
    • /
    • 1997
  • This paper describes a indirect sensing method for the rotor flux position of interior permanent magnet (IPM) brushless DC motors. The phase inductance of an IPM motor varies appreciably according to the rotor position. The waveform characteristics of the terminal voltage of IPM brushless DC motors is analysed and a simple and practical method for indirect sensing of the rotor position is proposed. A compact sensorless drive is implemented and tested using a 87c196mc 16-bit microcomputer. The experimental results show the validity of the proposed method and the drive works well from 500 to 7,200rpm.

  • PDF

A Study on the Linear Encoder for the high performance Oil Off Angle control of SRM (SRM의 고성능 온, 오프 각 제어를 위한 선형 엔코더에 관한 연구)

  • 이동희;박성준;이명재;한성현;백운보;이희섭
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.190-198
    • /
    • 2002
  • In switched reluctance motor(SRM) drive, it is necessary to synchronize the stator phase excitation with the rotor position. Therefore the rotor position information is an essential. Usually optical encoders or resolvers are used to provide the rotor position information. These sensors are expensive and are not suitable for high speed operation. In general, the accuracy of the switching angles is dependent upon the resolution of the encoder and the sampling period of the microprocessor. But the region of high speed, switching angles are fluctuated back and forth from the preset values, witch are cause by the sampling period of the microprocessor. Therefore, the low cost linear encoder suitable for the practical and stable SRM drive is proposed and the control algorithm to provide the switching signals using the simple digital logic circuit is also presented in this paper It is verified from the experiments that the proposed encoder and logic controller can be a powerful candidate for the practical low cost SRM drive.

  • PDF

A Study on the Sensorless Control of Synchronous Reluctance Motor using Trigonometric Function (삼각함수 계산을 이용한 동기형 릴럭턴스 전동기의 센서리스 제어 연구)

  • Ahn, Joon-Seon;Lee, Geun-Ho;Kim, Sol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.4
    • /
    • pp.30-37
    • /
    • 2011
  • Recently, SynRM has been focused by many researchers and there has been a lot of works for the industrial application of SynRM. In spite of several merits of SynRM, the information of exact rotor position is also required to perform the precise torque control, which causes the increment of cost and demerits SynRM to use in industrial application. Therefore, we studied sensorless control algorithm for the torque control of SynRM to overcome the demerits. Specially we proposed simple algorithm to estimate rotor position using trigonometric function, verified with computer simulation and experiment.