• Title/Summary/Keyword: Rotor performance

Search Result 1,498, Processing Time 0.029 seconds

A new vector control performance for induction motor with SVPWM (공간전압 벡터제어를 통한 유도전동기의 새로운 벡터제어성능연구)

  • Byun, Yeun-Sub;Jang, Dong-Uk
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2246-2248
    • /
    • 2001
  • This paper presents a new vector control scheme for induction motor. An exact knowledge of the rotor flux position is essential for a high-performance vector control. The position of the rotor flux is measured in the direct schemes and estimated in the indirect schemes. Since the estimation of the flux position requires a priori knowledge of the induction motor parameters, the indirect schemes are machine parameter dependent. The rotor and stator resistance among the parameters change with temperature. Variations in the parameters of induction machine cause deterioration of both the steady state and dynamic operation of the induction motor drive. Several methods have presented to minimize the consequences of parameter sensitivity in indirect scheme. In this paper, new estimation scheme of rotor flux position is presented to eliminate sensitivity due to variation in the resistance. The simulation is executed to verify the proposed vector control performance and to compare its performance with that of indirect and direct vector control.

  • PDF

Study on the Parameter Identification for Induction Motors (유도 전동기 파라미터 추정에 관한 연구)

  • 김규식
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.199-202
    • /
    • 2000
  • The accurate identification of the motor parameters in crucially important to achieve high dynamic performance of induction motors. In this paper parameter auto-tuning algorithms for stator(rotor) resistance stator(rotor) leakage inductance mutual inductance and rotor inertia. Stator(rotor) resistance and stator(rotor) leakage inductance are identified based on the stationary coordinate and mutual inductance and rotor resistor on the scalar speed control and the transient motor terminal voltage. To demonstrate the practical significance of our results we present some experimented results.

  • PDF

Rotor Flux Estimation of Induction Motor Using Extended Luenberger Observer (확장된 Luenberger 관측기를 이용한 유도전동기 회전자 자속추정)

  • 최연옥
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.600-604
    • /
    • 2000
  • In this paper authors proposed a new nonlinear rotor flux observer for rotor field oriented control of an induction motor which is designed based on theory of the extended Luenberger observer(ELO) one of a nonlinear state observer. The proposed rotor flux observer is derived from the 2 phase model of induction motor by the theory of ELO. The simulation results taken under the varying condition of rotor resistance and load torque show fast convergence of estimated rotor flux and high performance of IM drive system is achieved 표 experiment.

  • PDF

Numerical Study on the Effect of Turbine Shape on the Flow Characteristics and Performance of Dental Air Turbine Handpiece (터빈 형상에 따른 의료용 에어터빈 핸드피스의 유동분석 및 성능에 관한 수치적 연구)

  • Lee, Jeong-Ho;Lee, Sang-Do;Kim, Kui-Soon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.5-8
    • /
    • 2008
  • In this paper, the effect of turbine shape on the flow characteristics and performance of dental air turbine handpiece were studied using CFD. Computations have been performed for many different cases of the angle between the center-line of nozzle and turbine rotor by using frozen rotor method that one of steady-state method. The characteristics of turbine rotor for three different types (flat, concave, gull) were analyzed. Additionally, the turbine rotor of gull type that has better performance than others was computed for other reflected angles.

  • PDF

Fundamental Study on the HAT Tidal Current Power Rotor Performance by CFD (CFD를 이용한 수평축 조류발전 로터 성능의 기초연구)

  • Jo, Chul-Hee;Yim, Jin-Young;Lee, Kang-Hee;Chae, Kwang-Su;Rho, Yu-Ho;Song, Seung-Ho
    • New & Renewable Energy
    • /
    • v.5 no.2
    • /
    • pp.3-8
    • /
    • 2009
  • Tidal current power system is one of ocean renewable energies that can minimize the environmental impact with many advantages compared to other energy sources. Not like others, the produced energy can be precisely predicted without weather conditions and also the operation rate is very high. To convert the current into power, the first device encountered to the incoming flow is the rotor that can transform into rotational energy. The performance of rotor can be determined by various design parameters including numbers of blade, sectional shape, diameter, and etc. The stream lines near the rotating rotor is very complex and the interference effects around the system is also difficult to predict. The paper introduces the experiment of rotor performance and also the fundamental study on the characteristics of three different rotors and flow near the rotor by CFD.

  • PDF

Performance Analysis of Multiple Wave Energy Converters due to Rotor Spacing

  • Poguluri, Sunny Kumar;Kim, Dongeun;Ko, Haeng Sik;Bae, Yoon Hyeok
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.229-237
    • /
    • 2021
  • A numerical hydrodynamic performance analysis of the pitch-type multibody wave energy converter (WEC) is carried out based on both linear potential flow theory and computational fluid dynamics (CFD) in the unidirectional wave condition. In the present study, Salter's duck (rotor) is chosen for the analysis. The basic concept of the WEC rotor, which nods when the pressure-induced motions are in phase, is that it converts the kinetic and potential energies of the wave into rotational mechanical energy with the proper power-take-off system. This energy is converted to useful electric energy. The analysis is carried out using three WEC rotors. A multibody analysis using linear potential flow theory is performed using WAMIT (three-dimensional diffraction/radiation potential analysis program), and a CFD analysis is performed by placing three WEC rotors in a numerical wave tank. In particular, the spacing between the three rotors is set to 0.8, 1, and 1.2 times the rotor width, and the hydrodynamic interaction between adjacent rotors is checked. Finally, it is confirmed that the dynamic performance of the rotors slightly changes, but the difference due to the spacing is not noticeable. In addition, the CFD analysis shows a lateral flow phenomenon that cannot be confirmed by linear potential theory, and it is confirmed that the CFD analysis is necessary for the motion analysis of the rotor.

A robust indirect vector control for the rotor time constant variation of induction motors (유도전동기 회전자 시정수 변동에 강인한 간접 벡터제어)

  • 강현수;조순봉;현동석
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.3
    • /
    • pp.365-373
    • /
    • 1996
  • This paper presents the effects of rotor time constant variation and the on-line tuning algorithm of the rotor time constant. If the value of the rotor time constant is set incorrectly, the IFOC (Indirect Field Oriented Control)scheme exhibits deteriorated performance according to the wrong slip command. These variation effects of the rotor time constant are caused by the slip calculator where it is known that the rotor time constant play an important role in the aligned rotor flux. Using the two torque angles (stationary torque angle, rotating torque angle), the variation of the rotor time constant is identified, and the rotor time constant of the controller is tuned to the proper value of the machine. As the result, with the proposed algorithm, the dynamics of the deteriorated IFOC system, where the rotor time constant is varied, is improved. For the purpose of the validity of this proposed algorithm, the computer simulations and the experiments have been performed and the explanation of the results is presented. (author). refs., figs., tab.

  • PDF

Simultaneous Estimation of Rotor Speed and Rotor Resistance of an Induction Motor Using Variable Rotor Flux

  • Lee Zhen-Guo;Jeong Seok-Kwon
    • Journal of Power Electronics
    • /
    • v.5 no.4
    • /
    • pp.282-288
    • /
    • 2005
  • In this paper, a new speed sensorless induction motor scheme which can estimate rotor speed and rotor resistance simultaneously is presented. The rotor flux with a low frequency sinusoidal waveform is used to conduct on-line simultaneous estimation of the rotor speed and rotor resistance. Hence the proposed sensorless control method is robust to rotor resistance variations. Also, the control scheme has no current minor loop to determine voltage references. It contributes to good control performance at low speeds. Some simulation results supported by experiments are given to show the effectiveness of this method.

Effect of Rotor Design on Performance Characteristics of Slurry Pump Using Tornado Principle (토네이도 원리를 이용한 슬러리 펌프의 성능특성에 미치는 로터 형상의 영향)

  • Park, Sang Kyoo;Yang, Hei Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.10
    • /
    • pp.631-638
    • /
    • 2017
  • An experimental study was conducted to investigate the effect of a rotor design on the performance characteristics of a slurry pump using the tornado principle. The slurry pump differs considerably in terms of construction as well as operating principle when compared to the conventional centrifugal pump. The design parameters of the cross-shaped rotor included the diameter, thickness and height. The total head, shaft and water powers, and pump efficiency as a function of flow rate were compared with the design parameter. It was found that as the rotor diameter and height increase, the efficiency increases, whereas, an increase in the rotor thickness decreases the efficiency. In the rotor design condition of this study, the specific area and efficiency of the maximum height rotor were, respectively, smaller and higher than those of maximum diameter rotor.

An Experimental Study of Performance Characteristics on a Double Chamber Rotor Operated by High Pressure Air with Various Vanes (공압용 더블챔버 로터에서 베인개수에 따른 성능특성에 관한 실험적연구)

  • Cho, Chong-Hyun;Choi, Sang-Kyu;Cho, Soo-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.6 s.39
    • /
    • pp.54-62
    • /
    • 2006
  • An experiment about performance characteristics is conducted on a double chamber vane-type rotor. Three different rotors, which have 6, 8 and 9 vanes, are applied to the driver and various lift holes at the rear plate are used to increase the effective vane height. The inner diameter of a double chamber cylinder is ${\phi}27mm$, and the length of the cylinder is 65 mm. The maximum offset length between the rotor outer surface and the cylinder inner surface is 4.5 mm. In this study, specific output torques and powers are measured, and also noise and vibration are measured at the real operating situation. The operating torque on the double chamber is increased to 17% compared to the operating torque obtained at the single chamber which has the same size. The experimental results of noise and vibration show that the operating sound and vibration are directly related to the operating power generated by the double chamber rotor.