• 제목/요약/키워드: Rotor performance

검색결과 1,502건 처리시간 0.026초

유도전동기의 효율적인 회전자 저항 추정 알고리즘에 관한 연구 (A Study on Efficient Rotor Resistance Identification Algorithm for Induction Motros)

  • 오우석;김재윤;김규식
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 전력전자학술대회 논문집
    • /
    • pp.239-244
    • /
    • 1998
  • We propose a nonlinear feedback controller that can control the induction motors with high dynamic performance by means of decoupling of motor speed and rotor flux. A new recursive adaptation algorithm for rotor resistance which can be applied to our nonlinear feedback controller is also presented in this paper. Some simulation results show that the adaptation algorithm for rotor resistance is robust against the variation of stator resistance and mutual inductance. In addition, it is computationally simple and has small estimation errors.

  • PDF

750kW Gearless PM 동기발전기 로터프레임 경량화 (Structural optimization for rotor frame of 750kW gearless type PMSG)

  • 홍혁수;박진일;류지윤
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 추계학술대회 논문집
    • /
    • pp.286-289
    • /
    • 2008
  • Mass of generator is one of the most important characteristic value especially direct drive type wind turbine. This paper introduce how to decease mass of generator rotor frame without declining generator performance. To obtain optimal design of rotor frame, sensitivity analysis using Taguchi method and RSM(response surface method) are have been performed.

  • PDF

Steady-State/Transient Performance Simulation of the Propulsion System for the Canard Rotor Wing UAV during Flight Mode Transition

  • Kong, Changduk;Kang, Myoungcheol;Ki, Jayoung
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.513-520
    • /
    • 2004
  • A steady-state/transient performance simulation model was newly developed for the propulsion system of the CRW (Canard Rotor Wing) type UAV (Unmanned Aerial Vehicle) during flight mode transition. The CRW type UAV has a new concept RPV (Remotely Piloted Vehicle) which can fly at two flight modes such as the take-off/landing and low speed forward flight mode using the rotary wing driven by engine bypass exhaust gas and the high speed forward flight mode using the stopped wing and main engine thrust. The propulsion system of the CRW type UAV consists of the main engine system and the duct system. The flight vehicle may generally select a proper type and specific engine with acceptable thrust level to meet the flight mission in the propulsion system design phase. In this study, a turbojet engine with one spool was selected by decision of the vehicle system designer, and the duct system is composed of main duct, rotor duct, master valve, rotor tip-jet nozzles, and variable area main nozzle. In order to establish the safe flight mode transition region of the propulsion system, steady-state and transient performance simulation should be needed. Using this simulation model, the optimal fuel flow schedules were obtained to keep the proper surge margin and the turbine inlet temperature limitation through steady-state and transient performance estimation. Furthermore, these analysis results will be used to the control optimization of the propulsion system, later. In the transient performance model, ICV (Inter-Component Volume) model was used. The performance analysis using the developed models was performed at various flight conditions and fuel flow schedules, and these results could set the safe flight mode transition region to satisfy the turbine inlet temperature overshoot limitation as well as the compressor surge margin. Because the engine performance simulation results without the duct system were well agreed with the engine manufacturer's data and the analysis results using a commercial program, it was confirmed that the validity of the proposed performance model was verified. However, the propulsion system performance model including the duct system will be compared with experimental measuring data, later.

  • PDF

다중제약조건을 갖는 로터익형의 공력 최적 설계 (AERODYNAMIC DESIGN OPTIMIZATION OF ROTOR AIRFOIL WITH MULTIPLE CONSTRAINTS)

  • 이세민;사정환;전상언;김창주;박수형;정기훈
    • 한국전산유체공학회지
    • /
    • 제15권2호
    • /
    • pp.79-85
    • /
    • 2010
  • Aerodynamic design optimization of rotor airfoil has been performed with advanced design method for improved aerodynamic characteristics of ONERA airfoils. A multiple response surface method is used to consider various requirements in rotor airfoil design. Shape functions for mean camber line are proposed to extend possible design domain. Numerical simulations are performed using KFLOW, a Navier-Stokes solver with shear stress transport turbulence model. The present design method provides favorable configurations for the high performance rotor airfoil. Resulting optimized airfoils give better aerodynamic performance than the baseline airfoils.

스마트 무인기의 천이 스케줄러 설계개선 (Design Update of Transition Scheduler for Smart UAV)

  • 강영신;유창선;김유신;안성준
    • 한국항공운항학회지
    • /
    • 제13권2호
    • /
    • pp.14-26
    • /
    • 2005
  • A tilt-rotor aircraft has various flight modes : helicopter, airplane, and conversion. Each of flight mode has unique and nonlinear flight characteristics. Therefore the gain schedules for whole flight envelope are required for effective flight performance. This paper proposes collective, flap, and nacelle angle scheduler for whole flight envelope of the Smart UAV(Unmanned Air Vehicle) based on CAMRAD(Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics) II analysis results. The scheduler designs are improved so that the pitch attitude angle of helicopter mode was minimized. The range of scheduler are reduced inside of engine performance limits. The conversion corridor and rotor governor are suggested also.

  • PDF

고성능 벡터제어 유도기 구동장치의 모델링과 시뮬레이션 (Modeling and Simulation of A High Performance Vector Controlled Induction Motor Drive)

  • 김종구;최욱돈;손진근;이종찬;김진식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 A
    • /
    • pp.366-368
    • /
    • 1994
  • This paper deals with the vector control that control of torque and speed of the induction motor using field-oriented control method. Rotor flux is estimated using the indirect sensing method based on the rotor circuit equation in the synchronously rotation reference frame, and slip angle and rotor position are caculated from rotor angular velocity and stator current. Through modeling and digital simulation with a voltage source inverter, it is shown that the proposed scheme gives good static and dynamic performance to the induction motor drive.

  • PDF

Real Time Control of an Induction Motor Using IMC Approach

  • Nghia, Duong Hoai;Nho, Nguyen Van;Bac, Nguyen Xuan;Lee, Hong-Hee
    • Journal of Power Electronics
    • /
    • 제9권3호
    • /
    • pp.456-463
    • /
    • 2009
  • The paper presents a method for controlling induction motors using a nonlinear internal model control (IMC) approach. The process model and the inverse model are developed in the rotor flux coordinate. The main advantage of the proposed method is that it easily specifies the performance (steady state error, transient response, etc.) and the robustness of the controller by means of the IMC filters. Simulation results illustrate the effectiveness of the proposed method. Results on a real time system show that the control system has good performance and robustness against changes in motor parameters (rotor and stator resistances, rotor and stator inductances, rotor inertia).

다중제약조건을 가진 로터익형의 공력 최적 설계 (AERODYNAMIC DESIGN OPTIMIZATION OF ROTOR AIRFOIL WITH MULTIPLE CONSTRAINTS)

  • 이세민;사정환;전상언;김창주;박수형;정기훈
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.55-59
    • /
    • 2010
  • Aerodynamic design optimization of rotor airfoil has been performed with advanced design method for improved aerodynamic characteristics of ONERA airfoils as a baseline. A multiple response surface method is used to consider various consider various constraints in rotor airfoil design. Airfoil surface and mean camber line are modified using various shape functions. Numerical simulations are performed using KFLOW, a Navier-Stokes solver with shear stress transport turbulence model. The present design method provides favorable configurations for the high performance rotor airfoil. Resulting optimized air foils give better aerodynamic performance than the baseline airfoils.

  • PDF

새로운 유도전동기 벡터제어 기법 (A new vector control method for induction motor)

  • 변윤섭;왕종배;백종현;박현준
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2000년도 추계학술대회 논문집
    • /
    • pp.680-687
    • /
    • 2000
  • In this paper we present a new vector control scheme for induction motor. An exact knowledge of the rotor flux position is essential for a high-performance vector control. The position of the rotor flux is measured in the direct scheme or estimated in the indirect schemes. Since the estimation of the flux position requires a priori knowledge of the induction motor parameters, the indirect schemes are machine parameter dependent. The rotor resistance and stator resistance among the parameters change with temperature. Variations in the parameters of induction machine cause deterioration of both the steady state and dynamic operation of the induction motor drive. Several methods have been presented to minimize the consequences of parameter sensitivity in indirect scheme. In this paper new estimation scheme of rotor flux position is presented to eliminate sensitivity due to resistance change with temperature. Simulation results are used to verify the performance of the proposed vector control scheme.

  • PDF

Propulsive Performance Analysis of Ducted Marine Propulsors with Rotor-Stator Interaction

  • Jang, Jin-Ho;Yu, Hye-Ran;Jung, Young-Rae;Park, Warn-Gyu
    • Journal of Ship and Ocean Technology
    • /
    • 제8권1호
    • /
    • pp.31-41
    • /
    • 2004
  • A ducted marine propulsor has been widely used for the thruster of underwater vehicles for protecting collision damage, increasing propulsive efficiency, and reducing cavitation. Since a single-stage ducted propulsor contains a set of rotor and stator inside an annular duct, the numerical analysis becomes extremely complex and computationally expensive. However, the accurate prediction of viscous flow past a ducted marine propulsor is essential for determining hydrodynamic forces and the propulsive performances. To analyze a ducted propulsor having rotor-stator Interaction, the present work has solved 3D incompressible RANS equations on the sliding multiblocked grid. The flow of a single stage turbine flow was simulated for code validation and time averaged pressure coefficients were compared with experiments. Good agreement was obtained. The hydrodynamic performance coefficients were also computed.