• Title/Summary/Keyword: Rotor flux observer

Search Result 135, Processing Time 0.022 seconds

Sensorless Control of Induction Motor using Adaptive FNN Controller (적응 FNN에 의한 유도전동기의 센서리스 제어)

  • Lee, Young-Sil;Lee, Jung-Chul;Lee, Hong-Gyun;Nam, Su-Myeong;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.179-181
    • /
    • 2004
  • This paper is proposed an adaptive fuzzy-neural network(A-FNN) controller based on the vector controlled induction motor drive system. The hybrid combination of fuzzy control and neural network will produce a powerful representation flexibility and numerical processing capability. Also, this paper is proposed speed estimation of induction motor using A closed-loop state observer. The rotor position is calculated through the stator flux position and an estimated flux value of rotation reference frame. A closed-loop state observer is implemented to compute the speed feedback signal. The results of analysis prove that the proposed control system has strong robustness to rotor parameter variation, and has good steady-state accuracy and transitory response.

  • PDF

Sensorless Vector Control of Induction Motor with HAI Controller (HAI 제어기에 의한 유도전동기의 센서리스 벡터제어)

  • Lee, Jung-Chul;Lee, Hong-Gyun;Chung, Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.2
    • /
    • pp.73-79
    • /
    • 2005
  • This paper is proposed hybrid artificial intelligent (HAI) controller based on the vector controlled induction motor drive system. The hybrid combination of fuzzy control and neural network will produce a powerful representation flexibility and numerical processing capability. Also, this paper is proposed speed estimation of induction motor using a closed-loop state observer. The rotor position is calculated through the stator flux position and an estimated flux value of rotation reference frame. A closed-loop state observer is implemented to compute the speed feedback signal. The results of analysis prove that the proposed control system has strong robustness to rotor parameter variation, and has good steady-state accuracy and transitory response.

A Sensorless Speed Control of 2-Phase Asymmetric SRM with Parameter Compensator (파라미터 보상기를 가지는 비대칭 SRM의 센서리스 속도제어)

  • Lim, Geun-Min;Ahn, Jin-Woo;Lee, Dong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.238-245
    • /
    • 2012
  • This paper presents a sensorless speed control of a 2-phase switch reluctance motor(SRM). The proposed sensorless control scheme is based on the slide mode observer with parameter compensator to improve the estimation performance. In the stand still position, the initial rotor position is determined by pulse current responses of each phase windings and the current difference. In order to determine an accurate initial rotor position, the two initial rotor positions are estimated by the difference of the pulse currents. From the stand still to the operating region, a simple open loop control which determines the commutation sequence by the pulse current of the unexcited phase winding is used. When the motor speed is reached to the sensorless control region, the estimated rotor position and speed by the slide mode observer are used to control the SRM. The flux calculator used in the slide mode observer is designed by phase voltage and the voltage drops in the phase resistance of the winding. The accuracy of the flux calculator is dependent on the phase resistance. For the continuous update of the phase resistance, current gradient at the inductance break point is used in this paper. The error of the estimated rotor position at the current gradient position is used to update the phase resistance to improve the sensorless scheme. The proposed sensorless speed control scheme is verified with a practical compressor used in home appliances. And the results show the effectiveness of the proposed control scheme.

The Robut Vector Control for I.M. using Fuzzy-Neural Network (퍼지-신경망을 이용한 강인한 유도전동기 벡터제어)

  • Jeon, Hee-Jong;Kim, Beung-Jin;Son, Jin-Geun;Moon, Hark-Yong;Kim, Soo-Gon
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.293-295
    • /
    • 1995
  • In this article a fuzzy controller and neural network adaptive observer is proposed and applied to the case of induction motor control. The proposed observer which comprises neural network flux observer and neural network torque observer is trained to learn the flux dynamics and torque dynamics and subjected to further on-line training by means of a backpropagation algorithm. Therefore it has been shown that the robust control of induction motor neglects the rotor time constant variations.

  • PDF

A Sliding Mode Observer Design for Fuel Cell Electric Vehicles

  • Park In-Duck;Kim Si-Kyung
    • Journal of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.172-177
    • /
    • 2006
  • This paper presents the sliding mode observer of an induction motor for the fuel cell electric vehicles. The exact rotor flux estimation of the induction motor is important for achieving the best performance from the fuel cell electric vehicle system. However, the flux estimator of the induction motor control is highly sensitive to the voltage sensor output characteristics and system parameter variation influenced by external factors. In order to eliminate these problems, this paper investigates the electric vehicle performance due to parameter variation of the induction motor. A new method to estimate the fuel cell electric vehicle system is proposed based on the sliding mode observer.

Speed Estimation of Induction Motor Using Binary Observer (이원관측기를 이용한 유도전동기의 속도추정)

  • 김상욱;나재두;김영석
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.171-176
    • /
    • 1997
  • This paper presents a design method of the continuous inertial binary observer which includes the rotor flux and speed estimations. The sliding observer based on the variable structure theory ensures the robustness of disturbance and is applied for the method to keep an insensitivity for the variations of parameter. Sliding observer, however, has a high-frequency chattering deteriorating the state estimation performance. To reduce the chattering on the sliding surface in sliding observer and improve the estimation performance, binary observer scheme which has main advantages such as the absence of high-frequency chattering and the finite gains is applied in this paper. Computer simulation results show the effectiveness of binary observer proposed here for the induction motor drives.

  • PDF

A High-Performance Speed Sensorless Control System for Induction Motor with Direct Torque Control (직접 토크제어에 의한 속도검출기 없는 유도전동기의 고성능 제어시스템)

  • Kim, Min-Huei;Kim, Nam-Hun;Baik, Won-Sik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.1
    • /
    • pp.18-27
    • /
    • 2002
  • This paper presents an implementation of digital high-performance speed sensorless control system of an induction motor drives with Direct Torque Control(DTC). The system consists of closed loop stator flux and torque observer, speed and torque estimators, two hysteresis controllers, an optimal switching look-up table, IGBT voltage source inverter, and TMS320C31 DSP controller board. The stator flux observer is based on the combined current and voltage model with stator flux feedback adaptive control for wide speed range. The speed estimator is using the model reference adaptive system(MRAS) with rotor flux linkages for speed turning signal estimation. In order to prove the suggested speed sensorless control algorithm, and to obtain a high-dynamic robust adaptive performance, we have some simulations and actual experiments at low(20rpm) and high(1000rpm) speed areas. The developed speed sensorless system are shown a good speed control response characteristic, and high performance features using 2.2[kW] general purposed induction motor.

Sensor-Less Vector Control of Induction Motor using the Adaptive Sliding Observer (적응 슬라이딩 옵저버를 이용한 유도전동기의 센서없는 벡터제어)

  • Park, Eun-Jae;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.673-676
    • /
    • 1993
  • The field-oriented control of induction motor without speed sensor has been widely studied. This paper proposes the new design method of adaptive sliding observer for induction motor, which include the rotor speed identification together with the rotor flux estimation. The proposed adaptive observer has advantage of their global stability which is developed on some assumption. It is easy to analyse because the identifier is seperated from the controller. Finally, the chattering which is caused by switching is reduced by new control scheme, and the validaity of the adaptive algorithm is verified by simulation.

  • PDF

A Loss-Minimization Nonlinear Torque Control for Electrical Vehicle Induction Motors (전기자동차용 유도전동기의 에너지 손실을 최소화하는 비선형 토크 제어기 설계)

  • Jang, Jin-Su;Han, Byung-Jo;Hwang, Young-Ho;Kim, Hong-Pil;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1838-1839
    • /
    • 2006
  • In this paper, a loss-minimization nonlinear torque control for Electrical Vehicle(EV) induction motors is proposed. To improve the efficiency of the induction motors, it is important to find the optimal flux reference that minimize power losses. The proposed optimal flux reference is derived using a power loss function that is constructed with stator resistance losses, rotor resistance losses and core losses. And the time-varying load torque and the rotor resistance variation are considered in the power loss function. An algorithm that identifying the load torque is used. The rotor flux observer is used to obtain an accurate flux value regardless of the rotor resistance variation. Simulation results show a significant reduction in energy losses.

  • PDF

A High-Performance Motion Control System of Reluctance Synchronous Motor with Direct Torque Control (직접토크제어에 의한 리럭턴스 동기전동기의 고성능 위치제어 시스템)

  • Kim, Min-Hoe;Kim, Nam-Hun;Choe, Gyeong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.3
    • /
    • pp.150-157
    • /
    • 2002
  • This paper presents preliminarily an implementation of digital high-performance motion control system of Reluctance Synchronous Motor (RSM) drives with direct torque control (DTC). The system consist of stator flux observer, torque estimator, two hysteresis band controllers, an optimal switching look-up table, IGBT voltage source inverter, and TMS320F240 DSP controller made by Texas Instruments. The stator fluff observer is based on the combined voltage and current model with stator flux feedback adaptive control, and the input of the observer are the stator voltage and current of motor terminal for wide speed range. The rotor position and speed sensor used 6000 pulse/rev encoder. In order to prove rightness of the suggested control algorithm, we have some simulation and actual experimental system at $\pm$20 and $\pm$2000 rpm. The developed digitally high-performance motion control system+ are shown a good response characteristic of control results and high performance features using 1.0kW RSM which has 2.57 Ld/Lq salient ratio.