• Title/Summary/Keyword: Rotor flux observer

Search Result 135, Processing Time 0.03 seconds

A Speed Sensorless Induction Motor Control System using Direct Torque Control for Torque Ripple Reduction (직접 토크제어의 토크맥동 저감을 위한 속도검출기 없는 유도전동기 제어 시스템)

  • Kim, Nam-Hun;Kim, Min-Ho;Kim, Min-Huei;Kim, Dong-Hee;Hwang, Don-Ha
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.986-988
    • /
    • 2001
  • This paper presents a digitally speed sensorless control system for induction motor with direct torque control (DTC). Some drawbacks of the classical DTC are the relatively large torque ripple in a low speed range and notable current pulsation during steady state. They are reflected speed response and increased acoustical noise. In this paper, the DTC quick response are preserved at transient state, while better qualify steady state performance is produced by space vector modulation (SVM). The system are closed loop stator flux and torque observer for wide speed range that inputs are currents and voltages sensing of motor terminal, model reference adaptive control (MRAC) with rotor flux linkages for the speed fuming signal at low speed range, two hysteresis controllers and optimal switching look-up table. Simulation results of the suggest system for the 2.2 [kW] general purposed induction motor are presented and discussed.

  • PDF

Takagi-Sugeno Fuzzy Controller for Efficiency Optimization of Induction Motor with Model Uncertainties (Takagi-Sugeno 퍼지 제어기를 이용한 불확실성을 포함한 유도전동기의 효율 최적화)

  • Lee, Sun-Young;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1646_1647
    • /
    • 2009
  • In this paper, Takagi-Sugeno(T-S) fuzzy controller and search method are developed for efficiency optimization of induction motors(IMs). The proposed control scheme consists of efficiency controller and adaptive backstepping controller. A search controller for which information of input of T-S fuzzy controller is included in efficiency controller that uses a direct vector controlled induction motor. A sliding mode observer is designed to estimate rotor flux and an adaptive backstepping controller is used to control of speed of IMs. Simulation results are presented to validate the proposed controller.

  • PDF

Sensorless Speed Control of Induction Motor in Wide Speed Range (속도검출기가 없는 유도전동기의 광범위 속도 제어)

  • Ryu, Hyung-Min;Ha, Jung-Ik;Sul, Seung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2487-2489
    • /
    • 1999
  • This paper proposes a wide speed range sensorless vector control strategy. At low speed region, the difference of high frequency impedances is used in order to estimate the rotor flux angle. At high speed region this algorithm is combined with the adaptive observer. It enables the stable operation even at zero speed under the rated load condition This is verified by experimental results.

  • PDF

Speed Sensorless Control of PMSM Using Direct Torque Control (직접 토크 제어를 사용한 영구자석 동기전동기의 센서리스 속도제어)

  • Shin, S.S.;Kim, S.K.;Lee, D.H.;Kwon, Y.A.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.978-980
    • /
    • 2000
  • Sensorless PMSM is much studied for the industrial applications and home appliances because, a mechanical sensor reduces reliability and increases cost. Two types of instantaneous torque controls are basically used for high performance variable-speed a.c. drive : vector control and direct torque control. This paper investigates speed sensorless control of PMSM using direct torque control. The switching of inverter is determined from SVPWM realizing the command voltage which is obtained by flux error and measured current without d-q transformation. The rotor speed is estimated through adaptive observer with feedback loop. The simulation and experimental results indicate good performances.

  • PDF

A High-Performance Position Sensorless Motion Control System of Reluctance Synchronous Motor with Direct Torque Control (직접토크제어에 의한 위치검출기 없는 릴럭턴스 동기전동기의 위치 제어시스템)

  • 김동희;김민회;김남훈;배원식
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.5
    • /
    • pp.427-436
    • /
    • 2002
  • This paper presents an implementation of high-dynamic performance of position sensorless motion control system of Reluctance Synchronous Motor(RSM) drives for an industrial servo system with direct torque control(DTC). The problems of high-dynamic performance and maximum efficiency RSM drives controlled by DTC are saturation of stator linkage flux and nonlinear inductance characteristics with various load currents. The accurate estimation of the stator flux and torque are obtained using stator flux observer of which a saturated inductance $L_d$ and $L_q$ can be compensated by adapting from measurable the modulus of the stator current and rotor position. To obtain fast torque response and maximum torque/current with varying load current, the reference command flux is ensured by imposing $I_{ds} = I_{qs}$. This control strategy is proposed to achieve fast response and optimal efficiency for RSM drive. In order to prove rightness of the suggested control algorithm, the actual experiment carried out at $\pm$20 and $\pm$1500 rpm. The developed digitally high-performance motion control system shown good response characteristic of control results and high performance features using 1.0kW RSM which has 2.57 Ld/Lq salient ratio.