• Title/Summary/Keyword: Rotor blade passing frequency

Search Result 9, Processing Time 0.033 seconds

Installation Design of FLIR Sensor Considering Dynamic Characteristics of Helicopter Airframe (헬리콥터 동적 특성을 고려한 FLIR 센서 장착 설계)

  • Cho, Ki-Dae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.1
    • /
    • pp.33-38
    • /
    • 2005
  • Forcing at the rotor blade passing frequencies is responsible for the majority of vibration related problems on helicopters. Blade passing frequencies of helicopters are generally in the range 10~30 Hz and the interest modes of the helicopters also exist in the range. By the way, the installation of a heavy sensor at the front extremities of an imported helicopter may change the modal characteristics of the airframe and results in the resonance with rotor passing frequencies. To avoid too large a change in the dynamics of the overall airframe, we determined how to install a heavy sensor through conceptual approach and finite element analysis. The results of a ground vibration test for airframe with sensor mount system clearly demonstrate that the installation design is acceptable dynamically.

Mount Design of Helicopter FLIR Sensor Using Experimental Dynamic Model (실험적 동적 모델을 이용한 헬기용 FLIR 센서의 마운트 설계)

  • 조기대
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.11
    • /
    • pp.1129-1136
    • /
    • 2004
  • The structural modification to install a heavy sensor was made at the front extremities of the foreign-produced helicopter operated in the Korea Navy Mounting the sensor directly to the nose structure is unlikely to be practical because it lowers a dynamic mode of the airframe close to rotor blade passing frequencies, leading to increased helicopter vibration. Unfortunately we have no information on dynamic characteristics of the imported helicopter. So the experimental modal model derived from shake testing on the overall airframe of a working helicopter was used to solve the sensor Installation problems. The sensitivity analysis was done to evaluate what the best of modification woo)d be. Simple ID model and experimental modal data for mount system with sensor were Incorporated into overall dynamic model to assess the effects of the sensor installation on helicopter. Modal testing for the modified helicopter shows that the airframe modes are sufficiently displaced from rotor passing frequencies. The mount system has been proven fight to be sufficiently stable to meet vibration-level requirement for all required operational profiles.

Unsteadiness of Tip Leakage Flow in an Axial Compressor (축류 압축기 팁 누설 유동의 비정상 특성에 관한 연구)

  • Hwang, Yoo-Jun;Kang, Shin-Hyoung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.1
    • /
    • pp.58-63
    • /
    • 2012
  • Three dimensional unsteady numerical calculations were performed to investigate unsteadiness of the tip leakage flow in an axial compressor. The first stage of the four-stage low-speed research axial compressor was examined. Since this compressor has a relatively large tip clearance, the unsteadiness of the tip leakage flow is induced. Through the results from the unsteady calculations, the process of the induced unsteady tip leakage flow was investigated. It was shown that the leakage flow that occurred at a rotor blade tip clearance affected the pressure distribution on the pressure side near the tip of the adjacent blade, thus caused the fluctuation of the pressure difference between the pressure side and suction side. Consequently, the unsteady tip leakage flow was induced at the adjacent rotor blade. The unsteady feature of the tip leakage flow was changed as the operating point was moved. The interface between the tip leakage flow and the main flow only affected the trailing edge region at the design point whereas the interface influenced up to the leading edge at the low flow rate point. As the flow rate decreased, additionally, it was seen that the vortex size of the tip leakage flow increased and the relatively large length scale disturbance occurred. On the other hand, using frequency analysis, it was shown that the unsteadiness was not associated with the rotor speed and was about 40% of the blade passing frequency. This feature was explained in the rotor relative frame of reference, and the frequency decreased as the flow rate decreased.

Experimental Study on Noise Reduction of Fan for Automotive Air Conditioner (차량용 공조 팬의 소음 저감에 대한 실험적 연구)

  • Lee, Jin-Kab;Chung, Byung-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.51-56
    • /
    • 2013
  • This paper is the experimental study to investigate the noise sources location in order to reduce the noise level of line flow fan for the air conditioner in the subway car. The noise of line flow fan is caused by various factors such as the turbulence by air flow, random noise, noise of blade passing frequence(681Hz) and noise due to structural vibration of rotor unbalance(28.4Hz) by motor revolution. By performing the noise reduction on each sound source, the noise level is decreased as much as 5.7dB(A) through the controls of housing guide angle and distance, the configuration changes of flow passage shape and rotor balancing.

Ground Vibration Test for Korean Utility Helicopter (한국형 기동헬기 전기체 지상진동시험)

  • Kim, Se-Hee;Kwak, Dong-Il;Jung, Se-Un;Choi, Jong-Ho;Kim, Joung-Hun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.6
    • /
    • pp.495-501
    • /
    • 2013
  • Korean Utility Helicopter (KUH) has been designed to avoid the blade passing frequency and any instability due to a coupling of dynamic characteristics between the main rotor and the airframe in ground operation. For these design objectives, the vibration analysis and the ground resonance analysis were performed to analyze the dynamic characteristics of the airframe and the main rotor. Then, the whirl-tower test was conducted to identify the dynamic characteristics of the main rotor and the ground vibration test (GVT) was conducted to identify the dynamic characteristics of the airframe. The GVT for KUH was conducted with the test conditions and test articles established in consideration of each flight and ground condition. This paper shows the method and technique for performing the GVT for KUH and presents the correlation technique and the results for the correlated analysis model.

Design Optimization of Intake Muffler for Fuel Cell Electric Vehicle APU (연료전지 자동차의 공기 공급계용 흡기 소음기의 최적 설계)

  • Kim, Eui-Youl;Lee, Young-Joon;Lee, Sang-Kwon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.44-52
    • /
    • 2012
  • Fuel cell electric vehicles have some noise problems due to its air processing unit which is required to feed the ambient air into the fuel cell stack. Discrete-frequency noises are radiated from a centrifugal blower due to rotor-stator interaction. Their fundamental frequency is the blade passing frequency, which is determined by the number of rotor blades and their rotating speed. To reduce such noises, multi-chamber perforated muffler has been designed. In this paper, in order to improve the transmission loss of a perforated muffler, the relationship between the impedance model of a perforated hole and its noise reduction performance is studied, and the applicability of a short-length perforated muffler to air processing unit of fuel cell system is described using acoustic simulation results and experimental data. The acoustic velocity vector across the neck of a perforated hole is very important design factor to optimize the transmission of an intake muffler. The suggested short-length perforated muffler is effective on discrete-frequency noises while keeping the volume of intake muffler minimized.

Research on non-uniform pressure pulsation of the diffuser in a nuclear reactor coolant pump

  • Zhou, Qiang;Li, Hongkun;Pei, Lin;Zhong, Zuowen
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.1020-1028
    • /
    • 2021
  • The nuclear reactor coolant pump transferring heat energy inherently brings with it the unsteady flow and inevitably threatens to the safe operation of the pump unit, especially with the pressure pulsation induced by the rotor-stator interaction. In this paper, the characteristics of pressure pulsation of the diffuser in a nuclear reactor coolant pump were investigated by the numerical simulation with experimental validation. Pressure pulsation signals measured synchronously from sensors mounted on the radial diffuser of a model pump were analyzed via Welch's method. Frequency components induced by the rotor-stator interaction can be revealed by the diameter mode analysis method. The pressure pulsation of the diffuser is dominated by the blade passing frequency and its harmonics, which are free from the effect of flow rate and rotational speed while the corresponding amplitudes are easily affected by different operational conditions and measuring positions. The non-uniformity is much more affected by the rotational speed than the flow rate. This research is helpful for further work to reduce the pressure pulsation for the reactor coolant pump.

Experimental Study on the Effects of Upstream Periodic Wakes on Aerofoil-Boundary Layer and Loss (주기적 상류 후류의 익 경계층과 손실에 매치는 영향에 대한 실험적 연구)

  • Im, In-Won;Jo, Gang-Rae;Ju, Won-Gu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.219-226
    • /
    • 2002
  • This paper is concerned with the effects of periodically approaching upstream wakes on cascade-flow and loss. The reduced frequency of the periodic wakes was varied in the narrow range from 0.5 to 0.7 Corresponding to a wake-passing through the cascade, two velocity deficits appeared near the boundary layer contour in the downstream from about 60% chord-length. The first velocity deficit was caused by a periodic wake and the second one appeared after some delayed time. The second velocity deficit was interpreted as the results of reattachment of flow-separation. The higher reduced frequency decreased the duration time of separation appearance and the lesser losses of blade were resulted.

A method for localization of multiple drones using the acoustic characteristic of the quadcopter (쿼드콥터의 음향 특성을 활용한 다수의 드론 위치 추정법)

  • In-Jee Jung;Wan-Ho Cho;Jeong-Guon Ih
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.3
    • /
    • pp.351-360
    • /
    • 2024
  • With the increasing use of drone technology, the Unmanned Aerial Vehicle (UAV) is now being utilized in various fields. However, this increased use of drones has resulted in various issues. Due to its small size, the drone is difficult to detect with radar or optical equipment, so acoustical tracking methods have been recently applied. In this paper, a method of localization of multiple drones using the acoustic characteristics of the quadcopter drone is suggested. Because the acoustic characteristics induced by each rotor are differentiated depending on the type of drone and its movement state, the sound source of the drone can be reconstructed by spatially clustering the results of the estimated positions of the blade passing frequency and its harmonic sound source. The reconstructed sound sources are utilized to finally determine the location of multiple-drone sound sources by applying the source localization algorithm. An experiment is conducted to analyze the acoustic characteristics of the test quadcopter drones, and the simulations for three different types of drones are conducted to localize the multiple drones based on the measured acoustic signals. The test result shows that the location of multiple drones can be estimated by utilizing the acoustic characteristics of the drone. Also, one can see that the clarity of the separated drone sound source and the source localization algorithm affect the accuracy of the localization for multiple-drone sound sources.