• Title/Summary/Keyword: Rotor Time Constant

Search Result 86, Processing Time 0.028 seconds

A robust indirect vector control for the rotor time constant variation of induction motors (유도전동기 회전자 시정수 변동에 강인한 간접 벡터제어)

  • 강현수;조순봉;현동석
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.3
    • /
    • pp.365-373
    • /
    • 1996
  • This paper presents the effects of rotor time constant variation and the on-line tuning algorithm of the rotor time constant. If the value of the rotor time constant is set incorrectly, the IFOC (Indirect Field Oriented Control)scheme exhibits deteriorated performance according to the wrong slip command. These variation effects of the rotor time constant are caused by the slip calculator where it is known that the rotor time constant play an important role in the aligned rotor flux. Using the two torque angles (stationary torque angle, rotating torque angle), the variation of the rotor time constant is identified, and the rotor time constant of the controller is tuned to the proper value of the machine. As the result, with the proposed algorithm, the dynamics of the deteriorated IFOC system, where the rotor time constant is varied, is improved. For the purpose of the validity of this proposed algorithm, the computer simulations and the experiments have been performed and the explanation of the results is presented. (author). refs., figs., tab.

  • PDF

Rotor Time Constant Compensation of Vector Controlled Induction Motor Using Stator Current and Flux Error (고정자 전류와 자속의 오차를 이용한 벡터제어 유도전동기의 회전자 시정수 보상)

  • 김우현;박철우;임성운;권우현
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.5
    • /
    • pp.367-375
    • /
    • 2000
  • It is proposed that the rotor time constant and inductance are compensated at the same time in the indirect vector control method of an induction motor. The proposed scheme compensates the rotor time constant using the difference between the Q-axis real stator current and estimated current that is calculated from the terminal voltage and current, and compensates inductance by using the difference between the D-axis real stator flux and estimated stator flux in the synchronous rotating reference frame. Although the rotor time constant and inductance vary at once, the proposed method compensates the rotor time constant and inductance with accuracy. In addition to, two variables can be compensated not only at the steady state condition, but also at the transient state, where the torque varies in a rectangular pulse waveform. Therefore, the performance of vector control is greatly improved as verified by experiment.

  • PDF

Compensation of the rotor time constant of induction motor using current error feedback (전류오차 궤환을 이용한 유도전동기 회전자 시정수 보상)

  • 김승민;이무영;권우현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.195-198
    • /
    • 1997
  • This paper proposes the effective compensation method of the rotor time constant of induction motor. An indirect vector control method is highly dependent on the motor parameters. To solve the problem of performance degradation due to parameter variation in an indirect vector control of induction motor, we compensate the rotor time constant by current error feedback. The proposed method is a simple on-line rotor time constant compensation method using the information from terminal voltages and currents. As the current error, difference between current command and estimated current, approaches to zero, the value of rotor time constant in an indirect vector controller follows the real value of induction motor. This scheme is valid transient region as well as steady state region regardless of low or high speed. This method is verified by computer simulation. For this, we constructed the simulation model of induction motor, indirect vector controller and current regulated PWM (CRPWM) voltage source inverter (VSI) using SIMULINK in MATLAB.

  • PDF

Time Constant Estimation of Induction Motor rotor using MRAS Fuzzy Control (MRAS 퍼지제어를 이용한 유도전동기 회전자의 시정수 추정)

  • Lee Jung-Chul;Lee Hong-Gyun;Chung Dong-Hwa;Cha Young-Doo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.155-161
    • /
    • 2005
  • This paper presents time a constant estimation of induction motor using MRAS(model reference adaptive system) fuzzy control. The rotor time constant is enabled from the estimation of rotor flux, which has two methods. One is to estimate it based on the stator current and the other is to integrate motor terminal voltage. If the parameters are correct, these two methods must yield the same results. But, for the case where the rotor time constant is over or under estimated, the two rotor nut estimation have different angles. Furthermore their angular positions are related to the polarity of rotor time constant estimation error. Based on these observation, this paper develops a rotor time constant update algorithm using fuzzy control. This paper shows the theoretical analysis as well as the simulation results to verify the effectiveness of the new method.

Robust On-line Rotor Time Constant Estimation for Induction Machines

  • Yoo, Anno
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.1000-1007
    • /
    • 2014
  • This paper proposes an on-line rotor time constant estimation strategy for indirect field oriented induction machines. The performance of the indirect field oriented control is dependent especially on the rotor time constant whose value varies according to the temperature. The proposed method calculates the difference between the nominal rotor time constant and the real value from the d- and q-axis integration terms of a proportional integral (PI) current regulator and the demanded voltages of the induction machine to regulate the current in the steady state. Because the proposed strategy has a simple structure and is available in wide speed and torque ranges, the proposed method can be easily used in the industrial field. The effectiveness of proposed strategy is verified with simulations and a 7.5kW experimental setup.

Sensorless Vector Control of Induction Motor with Rotor Time Constant Compensation (회전자 시정수를 보상한 유도전동기 센서리스 벡터제어)

  • Park, Chul-Woo;Lee, Moo-Young;Youn, Kyung-Sub;Ku, Bon-Ho;Kwon, Woo-Hyen
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.493-496
    • /
    • 1998
  • Several sensorless vector control methods of induction motor have been proposed, but these methods don't have the satisfying performance to the change of the rotor time constant. Therefore, this paper proposes the sensorless vector control method which estimates the rotor speed using MRAS and compensates the rotor time constant using current error feedback at the same time. This method can guarantees the accurate performance of sensorless vector control while the rotor speed and the rotor time constant are changing. This method is verified by computer simulation using SIMULINK in MATLAB.

  • PDF

Rotor Time Constant Estimation for Induction Motor Direct Vector Control (유도전동기 직접벡터제어를 위한 회전자 시정수 추정)

  • Bae Sang-Jun;Choi Jong-Woo;Kim Heung-Geun;Lee Hong-Hee;Chun Tae-Won
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.113-118
    • /
    • 2003
  • The proposed rotor time constant estimation method can be applied to the direct vector control system of induction motor with flux observer In this paper the flux observer proposed by Gopinath model are used. This paper presents a new scheme for on-line estimation of rotor time constant using estimated rotor flux phase and current model rotor flux phase. The major advantage of this method are its dynamic correction capability, simplicity and accuracy as well as independence from change in motor parameter. simulation results are presented which demonstrate the effectiveness of the on line rotor time constant estimation.

  • PDF

Rotor Time Constant Compensation for Vector-Controlled Induction Motor with DC Current Injection Method (직류전류 주입법에 의한 벡터제어 유도전동기의 회전자 시정수 보상)

  • Lee, Gyeong-Ju;Lee, Deuk-Gi;Jeong, Jong-Jin;Choe, Jong-U;Kim, Heung-Geun;No, Ui-Cheol;Jeon, Tae-Won
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.2
    • /
    • pp.69-76
    • /
    • 2002
  • To obtain a high performance in a vector controlled induction motor, it is essential to know the instantaneous position of the rotor flux which depends on the rotor time constant. But the rotor time constant mainly varies due to the temperature rise in the motor winding, so real time compensating algorithm is necessary. This paper proposes that it uses short duration pulses added to the constant flux command current and then resultant torque command current produced by speed controller is utilized for the rotor resistance estimation. This method has advantage with a low computational requirement and does not require voltage sensors. The proposed method is proved by simulations and experimentals.

The rotor time constant compensation in sensorless vector control using stator current based MRAC (고정자 전류 기반의 MRAC를 이용한 유도전동기의 센서리스 벡터제어에서 회전자 시정수의 보상)

  • Park Chul-woo;Youn Kyung-sup;Im Sung-woon;Ku Bon-ho;Kwon Woo-hyen
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.192-195
    • /
    • 2002
  • The thesis proposes the sensorless vector control method that estimates the rotor speed and rotor time constant at the same time using stator current. In the proposed method, stator current error in the stationary reference frame is proportional to estimated speed error, and stator current error in the synchronous reference frame is proportional to estimated rotor time constant error. The proposed method can simultaneously produce a fast speed estimation and rotor time constant estimation. Therefore, this new method offers an improvement in the performance of a sensorless vector controller. And, the superiority of the proposed method is verified by simulation.

  • PDF

Real time Compensation Algorithm of Rotor time Constant for Vector Controlled Induction Machine (백터제어 유도전동기의 회전자 시정수 실시간 보상 알고리즘)

  • Jeong, Jin-Uk;Kim, Jin-Kyu;Lee, Deuk-Kee;Kim, Heung-Geun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1039-1041
    • /
    • 2000
  • To obtain a high performance in a vector controlled induction machine, it is essential to know the instantaneous position of the rotor flux which depends on the rotor time constant. But the rotor time constant mainly varies due to the temperature rise in the motor winding, so real time compensating algorithm is necessary. This paper proposes that it uses short duration pulses added to the constant flux command current and then resultant torque command current produced by speed controller is utilized for the rotor resistance estimation. This method has advantages with a low computational requirement and does not require voltage sensors. The proposed method is proved by simulations.

  • PDF