• Title/Summary/Keyword: Rotor Resistance

Search Result 255, Processing Time 0.025 seconds

Control of Elevator Induction Motors with High Dynamic Performance and High Power Efficiency (엘리베이터를 위한 유도전동기의 에너지절감 및 고성능제어)

  • 김규식;김재윤;최주엽;송중호
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.1
    • /
    • pp.43-49
    • /
    • 1999
  • We propose a nonlinear feedback controller that can control the induction motors with high dynamic performance and high power efficiency by means of decoupling of motor speed and rotor flux. The nonlinear feedback controller needs the information on some motor parameters. New recursive adaptation algorithms for rotor resistance and mutual inductance which can be applied to our nonlinear feedback controller are also presented in this paper. The recursive adaptation algorithms make the estimated values of rotor resistance and mutual inductance track their real values. Some simulation and experimental results show that the adaptation algorithms are robust against the variation of stator resistance and stator inductance.

Performance Improvement of a PMSM Sensorless Control Algorithm Using a Stator Resistance Error Compensator in the Low Speed Region

  • Park, Nung-Seo;Jang, Min-Ho;Lee, Jee-Sang;Hong, Keum-Shik;Kim, Jang-Mok
    • Journal of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.485-490
    • /
    • 2010
  • Sensorless control methods are generally used in motor control for home-appliances because of the material cost and manufactureing standard restrictions. The current model-based control algorithm is mainly used for PMSM sensorless control in the home-appliance industry. In this control method, the rotor position is estimated by using the d-axis and q-axis current errors between the real system and a motor model of the position estimator. As a result, the accuracy of the motor model parameters are critical in this control method. A mismatch of the PMSM parameters affects the speed and torque in low speed, steadystate responses. Rotor position errors are mainly caused by a mismatch of the stator resistance. In this paper, a stator resistance compensation algorithm is proposed to improve sensorless control performance. This algorithm is easy to implement and does not require a modification of the motor model or any special interruptions of the controller. The effectiveness of the proposed algorithm is verified through experimental results.

Oxidation Models of Rotor Bar and End Ring Segment to Simulate Induction Motor Faults in Progress

  • Jung, Jee-Hoon
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.163-172
    • /
    • 2011
  • Oxidation models of a rotor bar and end ring segment in an induction motor are presented to simulate the behavior of an induction machine working with oxidized rotor parts which are modeled as rotor faults in progress. The leakage inductance and resistance of the rotor parts arc different from normal values because of the oxidation process. The impedance variations modify the current density and magnetic flux which pass through the oxidized parts. Consequently, it causes the rotor asymmetry which induces abnormal harmonics in the stator current spectra of the faulty machine. The leakage inductances of the oxidation models are derived by the Ampere's law. Using the proposed oxidation models, the rotor bar and end ring faults in progress can be modeled and simulated with the motor current signature analysis (MCSA). In addition, the oxidation process of the rotor bar and end ring segment can motivate the rotor asymmetry, which is induced by electromagnetic imbalances, and it is one of the major motor faults. Results of simulations and experiments are compared to each other to verify the accuracy of the proposed models. Experiments are achieved using 3.7 kW, 3-phase, and squirrel cage induction motors with a motor drive inverter.

Sliding Mode Control of Induction Motors Using an Adaptive Sliding Mode Flux Observer (적응 슬라이딩모드 자속 관측기를 이용한 인덕션 모터의 슬라이딩 모드 제어)

  • Kim, Do-Woo;Chung, Ki-chull;Lee, Seng-Hak
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.10
    • /
    • pp.587-594
    • /
    • 2005
  • An adaptive observer for rotor resistance is designed to estimate rotor flux for the a-b model of an induction motor assuming that rotor speed and stator currents are measurable. A singularly perturbed model of the motor is used to design an Adaptive sliding mode observer which drives the estimated stator currents to their true values in the fast time scale. The adaptive observer on the sliding surface is based on the equivalent switching vector and both the estimated fluxes and the estimated rotor resistance converge to their true values. A speed controller considering the effects of parameter variations and external disturbance is proposed in this paper. First, induction motor dynamic model at nominal case is estimated. based on the estimated model, speed controller is designed to match the prescribed speed tracking specifications. Then a dead-time compensator and a robust controller are designed to reduce the effects of parameter variations and external disturbances. the desired speed tracking control performance can be preserved under wide operating range, and good speed load regulating performance. Some simulated results are provided to demonstrate the effectiveness of the Proposed controller.

Calculation of Resistance of Squirrel Cage Induction Motor End Ring using 3-D Finite Element Method (3차원 유한요소법을 이용한 농형유도전동기 단락환의 저항계산)

  • 박민우;이복용;이기석
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.10 no.2
    • /
    • pp.71-77
    • /
    • 1996
  • The end-ring may contribute a significant influence to the performance of machine. The induced currents flow through the bars of a cage rotor and complete their closed paths by passing around the end-ring. This dissertation is to describe a method for calculating end-ring resistance of squirrel cage rotor, based on 3-D finite element method(A-$\Phi$). The resistance under consideration of skin effect is calculated by using Joule's loss equation.

  • PDF

Quality Improvement of Smart UAV Rotor-Hub Part Through Gas Nitriding of Maraging Steel (가스질화처리 적용을 통한 스마트무인기 머레이징강 로터허브 부품 품질개선)

  • Lee, Myeong Kyu;Choi, Seong Wook;Kim, Jai Moo
    • Journal of Aerospace System Engineering
    • /
    • v.8 no.2
    • /
    • pp.33-39
    • /
    • 2014
  • Feathering spindle is one of the critical parts of the rotor system in the Smart Unmanned Aerial Vehicle(SUAV) that it was manufactured with special material, Maraging C300. During the initial ground and tie-down flight tests of the SUAV, surface of the feathering spindle contacting to the needle-roller bearings showed excessive wear and dent due to high vibrating loads transferred from the rotating blades. Gas nitriding process was applied to the bearing contact surface of the feathering spindle to increase surface hardness so as to improve the surface defects. This paper briefly presents the gas nitriding process adopted and the spindle quality improvements including wear and corrosion resistance.

Assessment of Rotor Winding Insulation Condition for Gas Turbine Generators (가스터빈 발전기 회전자 권선의 절연상태 평가)

  • Kim, Hee-Dong;Kim, Byeong-Rae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1818-1821
    • /
    • 2008
  • Several off-line diagnostic tests which include the insulation resistance(IR), polarization index(PI), low-voltage AC, and recurrent surge oscillograph(RSO) tests were performed to assess the condition of generator rotor windings. The low-voltage AC and the RSO tests were performed on the gas turbine generator rotor winding to detect shorted turns. Before intentionally applying artificial shorted faults, it was confirmed by the low voltage AC and the RSO tests that the winding was in sound condition. For simulated shorted rotor winding turns, the RSO test detected the fault in the winding. The RSO test was capable of identifying the number and pole location of the shorted turns for a number of simulated shorted coils.

Rotor flux Observer Using Robust Support Vector Regression for Field Oriented Induction Mmotor Drives (유도전동기 벡터제어를 위한 Support Vector Regression을 이용한 회전자자속 추정기)

  • Han Dong Chang;Back Woon Jae;Kim Sung Rag;Kim Han Kil;Lee Suk Gyu;Park Jung IL
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.70-78
    • /
    • 2005
  • In this paper, a novel rotor flux estimation method of an induction motor using support vector regression(SVR) is presented. Two well-known different flux models with respect to voltage and current are necessary to estimate the rotor flux of an induction motor. Training of SVR which the theory of the SVR algorithm leads to a quadratic programming(QP) problem. The proposed SVR rotor flux estimator guarantees the improvement of performance in the transient and steady state in spite of parameter variation circumstance. The validity and the usefulness of proposed algorithm are throughly verified through numerical simulation.

Real time Compensation Algorithm of Rotor time Constant for Vector Controlled Induction Machine (백터제어 유도전동기의 회전자 시정수 실시간 보상 알고리즘)

  • Jeong, Jin-Uk;Kim, Jin-Kyu;Lee, Deuk-Kee;Kim, Heung-Geun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1039-1041
    • /
    • 2000
  • To obtain a high performance in a vector controlled induction machine, it is essential to know the instantaneous position of the rotor flux which depends on the rotor time constant. But the rotor time constant mainly varies due to the temperature rise in the motor winding, so real time compensating algorithm is necessary. This paper proposes that it uses short duration pulses added to the constant flux command current and then resultant torque command current produced by speed controller is utilized for the rotor resistance estimation. This method has advantages with a low computational requirement and does not require voltage sensors. The proposed method is proved by simulations.

  • PDF

A Rotor Speed Estimation of Induction Motors Using Sliding Mode Cascade Observer (슬라이딩 모드 축차 관측기를 이용한 유도 전동기 속도추정)

  • 김응석
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.3
    • /
    • pp.145-153
    • /
    • 2004
  • A nonlinear adaptive speed observer is designed for the sensorless control of induction motors. In order to design the speed observer, the measurements of the stator currents and the estimates of the rotor fluxes are used. The sliding mode cascade observer is designed to estimate the time derivatives of the stator currents. The open-loop observer is designed to estimate the rotor fluxes and its time derivatives using the stator current derivatives. The adaptive observer is also designed to estimate the rotor resistance. Sequentially, the rotor speed is calculated using these estimated values. It is shown that the estimation errors of the corresponding states and the parameters converge to the specified residual set. It is also shown that the speed controller using these estimates is performed well. The simulation examples are represented to investigate the validity of the proposed observers for the sensorless control of induction motors.