• Title/Summary/Keyword: Rotor Performance

Search Result 1,502, Processing Time 0.024 seconds

Development of GUI Program for Automated Generation of Airfoil Performance Table (에어포일 공력 성능 테이블의 자동생성을 위한 GUI 환경의 프로그램 개발)

  • Kim, Tae-Woo;Lee, Jae-Won;Chae, Sang-Hyun;Oh, Se-Jong;Yee, Kwan-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.8
    • /
    • pp.685-692
    • /
    • 2007
  • This paper describes the development procedure of GUI Program for the automated generation of airfoil performance table used in helicopter comprehensive code. Considering commercialization, the program is developed based on the Windows operating system. In addition, it is aimed to enhance user's convenience by including embedded postprocessor which enables real-time display of calculation procedure and grid system. Using the validated CFD code, the aerodynamic analyses are automated for a given range of Mach number and angles of attack. The computational grid system is designed to generate automatically once the surface coordinates are given. Mixed-Language scheme is employed in order to combine the CFD code in Fortran with C++ based GUI program, which makes the time-consuming code conversion unnecessary.

Predicting the Aerodynamic Characteristics of 2D Airfoil and the Performance of 3D Wind Turbine using a CFD Code (CFD에 의한 2D 에어포일 공력특성 및 3D 풍력터빈 성능예측)

  • Kim, Bum-Suk;Kim, Mann-Eung;Lee, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.7
    • /
    • pp.549-557
    • /
    • 2008
  • Despite of the laminar-turbulent transition region co-exist with fully turbulence region around the leading edge of an airfoil, still lots of researchers apply to fully turbulence models to predict aerodynamic characteristics. It is well known that fully turbulent model such as standard k-model couldn't predict the complex stall and the separation behavior on an airfoil accurately, it usually leads to over prediction of the aerodynamic characteristics such as lift and drag forces. So, we apply correlation based transition model to predict aerodynamic performance of the NREL (National Renewable Energy Laboratory) Phase IV wind turbine. And also, compare the computed results from transition model with experimental measurement and fully turbulence results. Results are presented for a range of wind speed, for a NREL Phase IV wind turbine rotor. Low speed shaft torque, power, root bending moment, aerodynamic coefficients of 2D airfoil and several flow field figures results included in this study. As a result, the low speed shaft torque predicted by transitional turbulence model is very good agree with the experimental measurement in whole operating conditions but fully turbulent model(${\kappa}-\;{\varepsilon}$) over predict the shaft torque after 7m/s. Root bending moment is also good agreement between the prediction and experiments for most of the operating conditions, especially with the transition model.

Development of an Advanced Rotorcraft Preliminary Design Framework

  • Lim, Jae-Hoon;Shin, Sang-Joon;Kim, June-Mo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.2
    • /
    • pp.134-139
    • /
    • 2009
  • Various modules are generally combined with one another in order to perform rotorcraft preliminary design and its optimization. At the stage of the preliminary design, analysis fidelity is less important than the rapid assessment of a design is. Most of the previous researchers attempted to implement sophisticated applications in order to increase the fidelity of analysis, but the present paper focuses on a rapid assessment while keeping the similar level of fidelity. Each small-sized module will be controlled by an externally-operated global optimization module. Results from each module are automatically handled from one discipline to another which reduces the amount of computational effort and time greatly when compared with manual execution. Automatically handled process decreases computational cycle and time by factor of approximately two. Previous researchers and the rotorcraft industries developed their own integrated analysis for rotorcraft design task, such as HESCOMP, VASCOMP, and RWSIZE. When a specific mission profile is given to these programs, those will estimate the aircraft size, performance, rotor performance, component weight, and other aspects. Such results can become good sources for the supplemental analysis in terms of stability, handling qualities, and cost. If the results do not satisfy the stability criteria or other constraints, additional sizing processes may be used to re-evaluate rotorcraft size based on the result from stability analysis. Trade-off study can be conducted by connecting disciplines, and it is an important advantage in a preliminary design study. In this paper among the existing rotorcraft design programs, an adequate program is selected for a baseline of the design framework, and modularization strategy will be applied and further improvements for each module be pursued.

A Study on Partial-Load Performance Experiment & Analysis for Dynamic Transient Effect of Free Shaft Gas Turbine Engine (분리 축 가스터빈엔진의 동역학적 천이효과에 의한 부분부하성능 시험 및 해석에 관한 연구)

  • 김경두;이원중;양수석
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.183-188
    • /
    • 2003
  • The present work was conducted to build a propulsion system for an airship. For this purpose, free shaft gas-turbine was modified to produce electrical power. he experiments were carried out to analyze the driving rotor condition at various power shaft loads. From this analysis, an appropriate damping device was required, and the changeable inertial moment from the fly-wheel was applied. Without the appropriate damping device, instability was found, and it was resulted as power loss. Also the amount of inertial moment was certified by the performance of dynamic transient effects from the engine test results. Knowledge gained from this research could benefit the propulsion and power conversion community by increasing the better understanding of shaft loads and inertial effects.

  • PDF

Preliminary design and performance analysis of a radial inflow turbine (유기랭킨사이클용 반경류터빈의 예비설계 및 성능분석)

  • Kim, Do-Yeop;Kang, Ho-Keun;Kim, You-Taek
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.7
    • /
    • pp.735-743
    • /
    • 2015
  • The major component with a significant impact on the thermodynamic efficiency of the organic Rankine cycle is the turbine. Many difficulties occur in the turbine design of an organic Rankine cycle because the expansion process in an organic Rankine cycle is generally accompanied by a dramatic change in the working fluid properties. A precise preliminary design for a radial inflow turbine is hard to obtain using the classic method for selecting the loading and flow coefficients from the existing performance chart. Therefore, this study proposed a method to calculate the loading and flow coefficient based on the number of rotor vanes and thermodynamic design requirements. Preliminary design results using the proposed models were in fairly good agreement with the credible results using the commercial preliminary design software. Furthermore, a numerical analysis of the preliminary design results was carried out to verify the accuracy of the proposed preliminary design models, and most of the dependent variables, with the exception of the efficiency, were analyzed to meet the preliminary design conditions.

Aerodynamic Performance for Horizontal Axis Wind Turbine Model using Subsonic Wind Tunnel (풍동실험을 통한 수평축 풍력터빈 모델의 공력성능 연구)

  • Ryu, Ki-Wahn;Yoon, Seong-Jun;Lee, Chang-Su;Choy, Seong-Ok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.11
    • /
    • pp.964-972
    • /
    • 2007
  • Wind turbine experiment was carried out for the horizontal axis wind turbine with the aerodynamically optimized blade. From the comparison of aerodynamic performance between upwind and downwind type wind turbine rotor, the measured torque fluctuation of the latter is larger than that of the former. This phenomenon is owing to the interaction of wake generated from support column and blades. The wind turbine model satisfies the design condition in that the measured result of the power coefficient at zero pitch angle shows maximum peak at the designed tip speed ratio, λ = 6. It also shows that the decrease in aerodynamic power due to negative pitch change is more sensitive than that of the same positive pitch change.

A Study on Development of Test Site for Wind Turbine Prototype Test (풍력터빈시험을 위한 실증시험장 개발에 관한 연구)

  • Moon, Chae-Joo;Chang, Young-Hag;So, Soon-Yeol;Kim, Tae-Gon;Kim, Young-Gon;Jeong, Moon-Seon;Jeong, Seong-Won
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.2
    • /
    • pp.101-107
    • /
    • 2013
  • It is evident that in the wind energy business as an economic activity there is a close relationship between the wind speed and the revenues. The wind turbine test facility for wind turbine accreditation is intended to be used by the industry for testing of both main components and systems. This paper suggest the wind test site for certification of prototype wind turbine with international regulations. The test site has an environmental permit for wind turbines with a maximum hub height of 120m and a rotor diameter up to 120m, and can accommodate prototypes with installed electrical powers up to 5MW each. A wind turbine manufacturer can lease the location for a period of type certification. And also researchers are the development of new methods for measuring the influence, performance and durability of the components, a mathematical and numerical modelling of component responses by using the site.

Core-loss Reduction on Permanent Magnet for IPMSM with Concentrated Winding (집중권을 시행한 영구자석 매입형 동기전동기의 철손 저감)

  • Lee, Hyung-Woo;Park, Chan-Bae;Lee, Byung-Song
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.2
    • /
    • pp.135-140
    • /
    • 2012
  • Interior Permanent Magnet Synchronous motors (IPMSM) with concentrated winding are superior to distributed winding in the power density point of view. But it causes huge amount of eddy current losses on the permanent magnet. This paper presents the optimal permanent magnet V-shape on the rotor of an interior permanent magnet synchronous motor to reduce the core losses and improve the performance. Each eddy current loss on permanent magnet has been investigated in detail by using FEM (Finite Element Method) instead of equivalent magnetic circuit network method in order to consider saturation and non-linear magnetic property. Simulation-based design of experiment is also applied to avoid large number of analyses according to each design parameter and consider expected interactions among parameters. Consequently, the optimal design to reduce the core loss on the permanent magnet while maintaining or improving motor performance is proposed by an optimization algorithm using regression equation derived and lastly, it is verified by FEM.

A Fuzzy Back-EMF Observer for Sensorless Drive of BLDC Motor (브러시리스 전동기의 센서리스 구동을 위한 퍼지 역기전력 관측기)

  • Park, Byoung-Gun;Kim, Tae-Sung;Ryu, Ji-Su;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.2
    • /
    • pp.157-164
    • /
    • 2007
  • In this paper, a novel sensorless drive for brushless DC (BLDC) motor using the fuzzy back-EMF observer is proposed to improve the performance of conventional sensorless drive methods. Existing sensorless drive methods of the BLDC motor have low performance at transients or low speed range and occasionally require additional circuits. To cope with these problems, the back-EMF of the BLDC motor must be precisely estimated by a fuzzy logic, which is suitable to estimate the back-EMF which has a trapezoidal shape. The proposed algorithm using fuzzy back-EMF observer can achieve robust control for the change of an external condition and continuously estimate position of the rotor at transients as well as at steady state. The superiority of the proposed algorithm is proved through the simulation compared with other sensorless drive methods.

Investigation of Transient Performance of An Auxiliary Power Unit Microturbine Engine (보조동력용 마이크로터빈 엔진에 대한 과도성능 해석)

  • Son, Ho-Jae;Kim, Soo-Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.3
    • /
    • pp.20-28
    • /
    • 2007
  • The easiest way to see the phenomena of compressor surge is to show the static and dynamic operation characteristic on the map. Its operation zone will be restricted by the surge limit and, static and transient process must have some margin for it. Effect of rotor moment of inertia, air/gas volumes and heat transfer are factors to cause the transition from the static line. In case a large volume such as heat exchanger exists in the system it will exert a substantial influence to dynamic characteristics. In the present paper, influence of air volume bled from the compressor exit on transient process is investigated with an example of an auxiliary power unit micro-turbine engine. Turbine mass, pressure ratio, rotation speed, power and moment are calculated based on mass and work conservation. Result from the present study can give guidance to design the control system. A computer program is developed to calculate the dynamic process using the MathCAD commercial software.