• Title/Summary/Keyword: Rotor Fan

Search Result 150, Processing Time 0.025 seconds

Experimental Study on Noise Reduction of Fan for Automotive Air Conditioner (차량용 공조 팬의 소음 저감에 대한 실험적 연구)

  • Lee, Jin-Kab;Chung, Byung-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.51-56
    • /
    • 2013
  • This paper is the experimental study to investigate the noise sources location in order to reduce the noise level of line flow fan for the air conditioner in the subway car. The noise of line flow fan is caused by various factors such as the turbulence by air flow, random noise, noise of blade passing frequence(681Hz) and noise due to structural vibration of rotor unbalance(28.4Hz) by motor revolution. By performing the noise reduction on each sound source, the noise level is decreased as much as 5.7dB(A) through the controls of housing guide angle and distance, the configuration changes of flow passage shape and rotor balancing.

An Experimental Study on the Effect of Vortex-Type Applied to Design an Axial Flow Fan (축류송풍기의 설계시 적용된 와류형식의 영향에 관한 실험적 연구)

  • Cho, Soo-Yong;Choi, Bum-Seog;Oh, Jong-Hak
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.3 s.4
    • /
    • pp.7-16
    • /
    • 1999
  • The flow angle at the inlet and exit of a rotor or stator is an important design parameter involved in the design a fan blade. Flow angles along the radial direction for 3-D stacking are calculated using two kinds of vortex methods, i.e. free vortex method and forced vortex method. The performance test shows that a fan designed by the free vortex method is more efficient than a fan designed by the forced vortex method. As a reference, an imported fan is tested. Even though the straightner of the imported fan is used for the comparison test, the difference of efficiency between the imported fan and the fan designed by the free vortex method is negligible. The noise of the fan designed by the free vortex method is less than that of the imported fan. A bellmouth installed at the fan inlet improved the fan efficiency more than $10\%$.

  • PDF

The Study on Performance Model of Open Rotor Engine for Next Generation Aircraft (차세대 항공기용 Open Rotor 엔진 성능 모델 연구)

  • Choi, Won;Kim, Ji-Hong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.842-849
    • /
    • 2011
  • Open Rotor Engine is one of the several new technologies offering potential solution for the next generation aircraft. The coupling of ultra high bypass ratio and aerodynamically advanced fan blade design allow the open rotor engine to achieve and advantage in fuel consumption. The open rotor engine does have more thrust lapse than the general high bypass turbofan. The open rotor engine performance model was analyzed using a reference data based on the GE36 which was designed and tested data at which time a F404 turbojet was used as the core. The performance model of open rotor engine was verified by referred test data and was evaluated to be properly constructed, through the comparison of recent Next generation turboprop engine performance.

  • PDF

Research for Environmentally Friendly Exhaust Fan BLDC Motor Controller (친환경 환풍기를 위한 BLDC모터 제어기 연구)

  • Jung, Youngdeuk
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.4
    • /
    • pp.403-410
    • /
    • 2015
  • This study documents the 3-phase BLDC(Brushless DC) motor to improve conventional exhaust fan motor. Energy efficiency, noise, and air pollution reduction for the high-performance vibration of the BLDC motor has been used in many fields. It is necessary to achieve the information of rotor position for driving 3-phase type brushless DC motor. It is also necessary that the PWM control algorithm design for a MOSFET driver to control the motor speed control for each of three phases. BLDC motors for exhaust fan, we studied the controller and software. The control circuit and motor control program through which Exhaust fan up close and person can be used safely and protect the environment.

Numerical Analysis of Three-Dimensional Flow in a Forward Curved Centrifugal Fan (전향 원심 송풍기의 3차원 유동에 대한 수치해석)

  • Yoon, Joon-Yong;Maeng, Joo-Sung;Byun, Sung-Joon;Lee, Sang-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.7
    • /
    • pp.916-923
    • /
    • 2000
  • Numerical study of three-dimensional turbulent flow in a forward curved centrifugal fan is presented. Standard $k-{\varepsilon}$ turbulence model and non-orthogonal curvilinear coordinates arc used to consider the turbulent flow field and complex geometry. Finite Volume approach is adopted for discretization scheme and structured grid system is used to help convergence. Multiblock grid system is used for flow field and divided into five domains that are inlet, outlet, impeller, tip clearance and scroll. It is assumed that the flow field is steady and incompressible. These numerical results are compared with the experimental data inside a rotor and at the fan outlet. Most important flow features are captured through this numerical approach. Finally details of flow field inside a fan are described and analyzed.

Preliminary Throughflow Analysis of a Lift Fan in a Core Separated Turbofan Engine System

  • Shiratori, Toshimasa;Nakajima, Masahiro;Saito, Yoshio
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.491-498
    • /
    • 2004
  • Lift Fan Engines of JAXA's conceptual Jet VTOL aircraft have a very small bellmouse shape air intake, which make some differences in aerodynamic design of the blades. To obtain a better rotor or stator blade design, this paper performs a numerical analysis of the throughflow on a lift fan as a two-dimensional axisymmetrical flow. Based on the last report focusing on the air intake's influence on the throughflow, a more realistic bellmouse air intake case is treated to reconsider the influence on the throughflow by the small bellmouse air intake. Three work input patterns are tested to reduce some problematic influences on the throughflow or blade designs. The obtained result shows one of acceptable blade designs for the lift fan engine.

  • PDF

A Study of Design Method of an Axial-Type Suction Fan (축류형 흡입송풍기 설계기술에 관한 연구)

  • Choi, Hyoung-Jun;Kim, Chang-Su;Cho, Chong-Hyun;Cho, Soo-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.1
    • /
    • pp.42-51
    • /
    • 2010
  • Many different types of fan have been applying to various industrial fields. Fan design methods are much different depending on the types of fan, operating conditions, and connecting parts at the inlet or exit of the fan etc. In this study, design methods for an axial-type suction fan are studied. This fan discharges the air in the relative static pressure of -285Pa to the atmosphere with the flow rate of $960m^3/min$. For three-dimensional blade design, three different design methods were applied, such as the free vortex method, the exponential method, and the cascade method. In the cascade method, the blade loading along the radial direction was obtained from the lift coefficient which was necessary to obtain the pressure rise on a fan rotor. This method is different from the free vortex and the exponential method which control the strength of the vortex. The fan performance prediction was conducted using the CFD with three different inlet ducts. The best fan performance was obtained when the fan was designed by using the cascade method. The designed fan using the exponential method showed better performance compared to a fan designed using the free vortex method. However, the fan performance was changed depending on the installed inlet ducts. So, an efficient fan can be designed with the adjustment of design variables on the basis of the flow structures within the fan as well as the fan design procedure.

Flow Characteristics of a Tip Leakage Vortex at Different Flow Rates in an Axial Flow Fan (유량에 따른 축류홴의 익단누설와류 특성)

  • Jang, Choon-Man;Kim, Kwang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1383-1388
    • /
    • 2004
  • The flow characteristics in the blade passage of a low speed axial flow fan have been investigated by experimental analysis using a rotating hot-wire sensor for design and off-design operating conditions. The results show that the tip leakage vortex is moved upstream when flow rate is decreased, thus disturbing the formation of wake flow near the rotor tip. The tip leakage vortex interfaces with blade pressure surface, and results in high velocity fluctuation near the pressure surface. From the relative velocity distributions near the rotor tip, large axial velocity decay is observed at near stall condition, which results in large blockage compared to that at the design condition. Througout the flow measurements using a quasi-orthogonal measuring points to the tip leakage vortex, it is noted that the radial position of the tip leakage vortex is distributed between 94 and 96 percent span for all flow conditions. High spectrum density due to the large fluctuation of the tip leakage vortex is observed near the blade suction surface below the frequency of 1000 Hz at near stall condition.

  • PDF

Performance Evaluation and Comparison of Conventional 12/8 and Novel 6/5 Switched Reluctance Motors (기존 12/8 및 새로운 6/5 SRM의 성능분석 및 비교)

  • Xu, Zhenyao;Lee, Dong-Hee;Ahn, Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.517-518
    • /
    • 2016
  • In this paper, a novel 6/5 switched reluctance motor (SRM) with segmental rotor is proposed for vehicle cooling fan application. Unlike conventional SRMs, the proposed motor adopts hybrid stator poles and segmental rotor structures, thereby making the motor operate in short flux paths and parts of the flux paths magnetically isolated between the phases. Therefore, compared with conventional SRMs, the proposed structure could improve the output torque density and reduce the core loss, thereby improving the electric utilization of the motor. To verify the proposed structure, the performance of the proposed structure is evaluated. Meanwhile, a conventional 12/8 SRM which has been used for vehicle cooling fan application is also evaluated. Finally, the effectiveness of the proposed SRM is demonstrated by the simulation and experimental results.

  • PDF

Characteristic Analysis and Design of Switched Reluctance Motor for the Improved 2-phase Snail-earn Type Fan Motor

  • Lee, Ji-Young;Lee, Geun-Ho;Hong, Jung-Pyo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.1
    • /
    • pp.1-5
    • /
    • 2004
  • This paper deals with the design and analysis of a 2-phase Switched Reluctance Motor (SRM) used for the cooling fan motor of a refrigerator. To reduce the dead zone and improve the efficiency, the snail-earn type rotor pole and the asymmetric stator pole are investigated. For the optimal shape design, the performances of each model are obtained from numerical calculation results by 2D time-stepping finite element method (FEM) coupled with circuit equations. The accuracy of analysis is verified by comparing the analysis results with experimental data. According to the investigation results, improved shapes of stator and rotor poles are proposed.