• Title/Summary/Keyword: Rotor Blade

Search Result 779, Processing Time 0.024 seconds

Performance Characteristics of a Partially Admitted Small Mixed-Type Turbine (부분분사에서 작동하는 소형 사류형 터빈에서의 성능특성에 관한 연구)

  • Cho, Chong-Hyun;Kim, Chae-Sil;Paeng, Jin-Gi;Cho, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.9
    • /
    • pp.889-898
    • /
    • 2009
  • A mixed-type turbine was adopted and the rotor outer diameter was 108 mm. Turbine rotors were designed to the axial-type blade because the turbine operated at a low partial admission rate of 1.7-2.0% with two stages. Performance characteristics were studied when the spouting from the nozzle was toward radially inward or outward direction. Additionally, the effect at each stage of the rotor was measured. For comparing with each turbine performance, properties were measured based on various rotational speeds. Measured net specific torque was used to compare with the turbine system performance. On the mixed-type turbine, better performance was obtained when the operating air spouted toward radially inward direction. The specific torque was increased by 7.8% from using the second stage although its effect depended on the rotational speed.

Performance Analysis by CFD and Aerodynamic Design of 100kW Class Radial Turbine Using Waste Heat from Ship (선박 폐열을 이용한 100kW급 구심터빈 공력설계 및 CFD에 의한 성능해석)

  • Mo, Jang-Oh;Kim, You-Taek;Kim, Mann-Eung;Oh, Cheol;Kim, Jeong-Hwan;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.175-181
    • /
    • 2011
  • The purpose of this study is to secure the design data for the optimization of the radial turbine and heat cycle system, by using the CFD analysis technique and the design of 100kW class radial turbine applicable to waste heat recovery generation system for ship. Radial turbine was comprised of scroll casing, vane nozzle with 18 blades and rotor with 13 blades, and analysis grid was used to about 2.3 million. Mass flow rate and rotational speed was 0.5kg/s, 75,0000rpm, respectively. Eight kinds of inlet pressure was set between 195 and 620kPa. As the flow accelerated through the nozzle passage to the throat, the pressure level at the pressure and suction sides becomed similar to about Mach number of 0.35. When the inlet temperature and pressure was $250^{\circ}C$, 352kPa respectively, the isentropic efficiency and mechanical power showed the analysis results of 74% and 108kW.

Aeroelastic Stability Analysis of Bearingless Rotors with Composite Flexbeam in Hover (복합재 유연보를 갖는 무베어링 로우터 시스템의 정지 비행시 공탄성 안정성 해석)

  • Lim, In-Gyu;Choi, Ji-Hoon;Lee, In;Han, Jae-Hung
    • Composites Research
    • /
    • v.17 no.3
    • /
    • pp.29-37
    • /
    • 2004
  • The aeroelastic stability analysis of composite bearingless rotors is investigated using a large deflection beam theory in hover. The bearingless rotor configuration consists of a single flexbeam with a wrap-around type torque tube and the pitch links located at the leading edge and trailing edge of the torque tube. The outboard main blade, flexbeam and torque tube are all assumed to be an elastic beam undergoing flap bending, lead-lag bending, elastic twist and axial deflections, which are discretized into beam finite elements. For the analysis of composite bearingless rotors, flexbeam is assumed to be a rectangular section made of laminate. Two-dimensional quasi-steady strip theory is used for aerodynamic computation. The finite element equations of motion for beams are obtained from Hamilton's principle. The p-k method is used to determine aeroelastic stability boundary. Numerical results are presented for selected bearingless rotor configurations based on the lay-up of laminae in the flexbeam and pitch links location. A systematic study is made to identify the importance of the stiffness coupling terms on aeroelastic stability for various fiber orientation and for different configuration.

A Numerical Study on the Effect of Mountainous Terrain and Turbine Arrangement on the Performance of Wind Power Generation (지형에 따른 발전기 배치가 풍력 발전 성능에 미치는 영향에 관한 수치해석 연구)

  • Lee, Myung-Sung;Lee, Seung-Ho;Hur, Nahm-Keon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.10
    • /
    • pp.901-906
    • /
    • 2010
  • A three-dimensional flow simulation was performed to investigate the flow field in a wind farm on a complex terrain. The present study aims to examine the effects of mountainous terrain and turbine arrangement on the performance of wind power generation. A total of 49 wind turbines was modeled in the computational domain; detailed blade shape of the turbines was considered. Frozen rotor method was used to simulate the rotating operation. The torque acting on the turbine blades was calculated to evaluate the performance of the wind turbines. The numerical results showed details of the flow structure in the wind farm including the velocity deficit in the separated flow regions; this velocity deficit was due to the topographical effect. The effect of the wake induced by the upstream turbine on the performance of the downstream wind turbine could also be observed from the results. The methodology of the present study can be used for selecting future wind-farm sites and wind-turbine locations in a selected site to ensure maximum power generation.

Analysis of Particle Laden Flow and Erosion Rate Around Turbine Cascade (터빈 익렬 주위에서의 부유입자 유동 및 마모량 해석)

  • 김완식;조형희
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.2
    • /
    • pp.14-23
    • /
    • 1998
  • The present study investigates numerically particle laden flow through compressor cascade. In general, a lot of turbine engines are affected by various particles which are suspending in the atmosphere. Especially in the case of aircraft aviating in volcanic, industrial and desert region including many particles, each components of engine system are damaged severely. That damage modes are erosion of compressor binding and rotor path components, partial or total blockage of cooling passage and engine control system degradation.. Initial damages can not be serious but cumulation of damages influences on safety of aircraft control and economical maintenance cost of engine system can be increased. When dust, materials and volcanic particles in the atmosphere flow in the compressor, it is necessary to predict damaged and deposited region of compressor blades. To the various flow inlet angle, predictions of particles trajectory in compressor cascade by Lagrangian method are presented and impulses by impaction of particles at blade surface are calculated. By the definition of particle deposition efficiency, characteristics of particles impact are considered quantitatively. With these prediction and experimental data, erosion rates are predicted for two materials - ceramic, soft metal - on compressor blade surface. Improvements like coating of blade surface could be found, by above prediction.

  • PDF

Feasibility of Bladder Compression Molded Prepreg as Small Wind Turbine Blade Material (소형 풍력 터빈 블레이드 재료로서 블래더 가압 방식 몰드 성형 프리프레그의 타당성)

  • Yi, Bo-Gun;Seo, Seong-Won;Song, Myung-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.2
    • /
    • pp.95-101
    • /
    • 2020
  • The wind turbine blades should be designed to possess a high stiffness and should be fabricated with a light and high strength material because they serve under extreme combination of lift and drag forces, converting kinetic energy of wind into shaft work. The goal of this study is to understand the basic knowledge required to curtail the process time consumed during the construction of small wind turbine blades using carbon fiber reinforced polymer (CFRP) prepeg composites. The configuration of turbine rotor was determined using the QBlade freeware program. The fluid dynamics module simulated the loads exerted by the wind of a specific speed, and the stress analysis module predicted the distributions of equivalent von Mises stress for representing the blade structures. It was suggested to modify the shape of test specimen from ASTM D638 to decrease the variance in measured tensile strengths. Then, a series of experiments were performed to confirm that the bladder compression molded CFRP prepreg can provide sufficient strength to small wind turbine blades and decrease the cure time simultaneously.

Aerodynanamic design and performance analysis of a 5kW HAWT rotor blades (5Kw급 수평축 풍력 터빈 로터블레이드의 공력 설게 및 성능예측)

  • Kim, Mun-Oh;Kim, Bum-Suk;Mo, Jang-Ho;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.182.1-182.1
    • /
    • 2010
  • 현재 전 세계적으로 가장 널리 개발하고 보급되어지고 있는 풍력산업의 시장 규모는 매년 확대되고 있다. 특히 소형 풍력발전 시스템은 낙도 등의 전력 공급이 어려운 지역에 경제성 있는 전력 보급을 가능하게 한다. 국내의 미전화 지역과 일반 가정에서 풍력 에너지 자원을 적극 활용 개발하기 위해서 보다 우수한 성능의 풍력발전기용 블레이드를 설계하고자, 공기역학적인 최적설계에 대해 연구함으로써 추후 보급형 풍력발전 시스템의 개발에 필요한 설계 기술을 확립하고자한다. 본 연구는 설계된 블레이드의 유동해석 및 성능예측을 위하여 경제적으로 많은 지원이 필요한 대규모 풍동실험이 아닌 상용 CFD를 사용하여 보다 효율적으로 우수한 성능을 가지는 풍력 터빈을 설계함에 있다. Reynolds Averaged Navier-Stokes 방정식에 기반을 둔 CFD의 경우 이론적으로 명확한 해석이 가능하고, 실제 터빈의 운전 환경과 동일한 다양한 물리적 변수를 입력 데이터로서 활용할 수 있는 장점이 있기 때문에 풍력 터빈의 설계 과정에서 반영된 미소한 블레이드 형상변화 및 운전 조건의 변화에 따른 유동장의 변화 및 풍력터빈 성능을 정확히 예측할 수 있는 장점을 가지고 있다.

  • PDF

Performance Analysis of a savonius type direct drive turbine for wave energy conversion

  • Zullah, Mohammed Asid;Prasad, Deepak Divashkar;Choi, Young-Do;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.237.2-237.2
    • /
    • 2010
  • Although oscillating water column type wave energy devices are nearing the stage of commercial exploitation, there is still much to be learnt about many facets of their hydrodynamic performance. The techniques of Computational Fluid Dynamics (CFD) are applied to simulate a wave energy conversion device in free surface such as waves. This research uses the commercially available ANSYS CFX computational fluid dynamics flow solver to model a complete oscillating water column system with savonius turbine incorporated at the rear bottom of the OWC chamber in a three dimensional numerical wave tank. The purpose of the present study is to investigate the effect of an average wave condition on the performance and internal flow of a newly developed direct drive turbine (DDT) model for wave energy conversion numerically. The effects of blade angle and front lip shape on the hydrodynamic efficiency are investigated. The results indicated that the developed models are suitable to analyze the water flow characteristics both in the chamber and in the turbine. For the turbine, the numerical results of torque were compared for the all cases. The results of the testing have also illustrated that simple changes to the front wall aperture shape can provide marked improvements in the efficiency of energy capture for OWC type devices.

  • PDF

A Study on the Flow Characteristics of an Axial Flow Fan by Unsteady Pressure Measurement (비정상 압력측정을 통한 축류휀 유동특성에 관한 연구)

  • Kang, Chang-Sik;Shin, You-Hwan;Kim, Kwang-Ho;Lee, Du-Yeol
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.3 s.16
    • /
    • pp.15-24
    • /
    • 2002
  • This paper presents an experimental study on the unsteady flow phenomena such as leakage flow and rotating stall which have influences on the performance and stability of an axial flow fan. For this study, unsteady pressure were measured using high frequency pressure transducers mounted on the easing wall of rotor passage and analyzed by Double Phase-Locked Averaging Technique. As the flow rate was reduced to near stall point, the pressure difference between the pressure and the suction side of the blade was increased especially new the leading edge and the lowest pressure zone of suction side was gradually developed. From the result of unsteady pressure field on the casing wall, one period of rotating stall was divided into three zones and the flow characteristics on each zone were described in detail.

A Study on the Evaluation for the Application of a Comn CFD Code to Flow Analysis of a HAWTs (수평축 풍력발전용 터빈의 유동 해석을 위한 상용 CFD 코드의 적용성 평가에 관한 연구)

  • Kim, B. S.;Kim, J. H.;Nam, C. D.;Lee, Y. H.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.396-401
    • /
    • 2002
  • The purpose of this 3-D numerical simulation is evaluate the application of a commercial CFD code to predict 3-D flow characteristics of wind turbine. The experimental approach, which has been main method of investigation, appears to be its limits, the cost increasing disproportionally with the size of the wind turbines, and is hence mostly limited to observing the phenomena. Hence, the use of Computational Fluid Dynamics (CFD) techniques and Wavier-Stokes solvers are considered a very serious contender. The flow solver CFX-TASCflow is employed in all computations presented in this paper. The 3-D flow separation and the wake distribution of 2 bladed Horizontal Axis Wind Turbines (HAWTs) are compared to Heuristic model and visualized result by NREL(National Renewable Energy Laboratory). Simulated 3-D flow separation structure on the rotor blade is very similar to Heuristic model and the wake structure of the wind turbine is good agree with visualized results.

  • PDF