• Title/Summary/Keyword: Rotor Analysis

Search Result 2,197, Processing Time 0.03 seconds

Estimation of Motor Deterioration using Pulse Signal and Insulation Resistance Measurement Algorithm (펄스 신호 및 절연저항 측정 알고리즘을 이용한 전동기 열화 추정)

  • Jeong, Sungin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.5
    • /
    • pp.111-116
    • /
    • 2022
  • The causes of motor burnout include overload, phase loss, restraint, interlayer short circuit, winding ground fault, instantaneous overvoltage, and the rotor contacting the stator, leading to insulation breakdown, leading to breakdown or electrical accidents. Therefore, equipment failure causes not only loss due to cost required for equipment maintenance/repair, but also huge economic loss due to productivity decrease due to process stop because the process itself including the motor is stopped. The current level of technology for diagnosing motor failures uses vibration, heat, and power analysis methods, but there is a limit to analyzing the problems only after a considerable amount of time has passed according to the failure. Therefore, in this paper, a device and algorithm for measuring insulation resistance using DC AMP signal was applied to an industrial motor to solve this problem. And by following the insulation resistance state value, we propose a diagnosis of deterioration and failure of the motor that cannot be solved by the existing method.

A Study on the Electrical and Heat Generation Characteristics of an Induction Motor under Restrained Operation (유도전동기의 구속운전에 따른 전기 및 발열 특성 연구)

  • Jong-Chan Lee;Doo-Hyun Kim;Sung-Chul Kim
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.1
    • /
    • pp.25-33
    • /
    • 2023
  • In this study, we determined the failure rate and fire status of electric motors widely used in domestic and industrial devices and analyzed the associated fire risks by identifying the electrical and temperature characteristics of electric motors under the normal and restrained operation modes in industrial sites and laboratories. A 2.2kW motor used for driving a conveyor during the vulcanization process in a rubber product manufacturing plant was employed as the study object and was exposed to a high- temperature environment as this motor is widely used in industrial sites. The current amplitude was 4.45-4.50 A during normal operation and 38.2-41.5 A during restrained operation due to the pinching of products and semi-finished products (i.e., 8.5 times higher than that during normal operation). The leakage current amplitude was 0.33 mA during both operation modes. The temperature of the workplace in summer was 42.38℃, indicating a poor environment for the installed motor. In the laboratory, the current and temperature of the coil inside a 3.7kW motor were measured under the restrained operation mode as performing measurements of the coil inside the motor in industrial sites is challenging. The current amplitude during normal operation was 3.5 A, whereas that during restrained operation for 30 s was 51.7-58.6 A, which is 14.8-16.7 times higher than that of normal operation. Moreover, the temperature of the motor coil increased from 22.9℃ to 101℃. Based on the experimental data, we derived the temperature increase formula according to the restrained operation time by performing a regression analysis and verified the time at which the temperature exceeded the stipulated limit for the insulation grade. The findings presented in this paper can be utilized to establish fire-prevention measures and perform safety management of motors of the same type or with a similar capacity.

Prognosis of Blade Icing of Rotorcraft Drones through Vibration Analysis (진동분석을 통한 회전익 드론의 블레이드 착빙 예지)

  • Seonwoo Lee;Jaeseok Do;Jangwook Hur
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • Weather is one of the main causes of aircraft accidents, and among the phenomena caused by weather, icing is a phenomenon in which an ice layer is formed when an object exposed to an atmosphere below a freezing temperature collides with supercooled water droplets. If this phenomenon occurs in the rotor blades, it causes defects such as severe vibration in the airframe and eventually leads to loss of control and an accident. Therefore, it is necessary to foresee the icing situation so that it can ascend and descend at an altitude without a freezing point. In this study, vibration data in normal and faulty conditions was acquired, data features were extracted, and vibration was predicted through deep learning-based algorithms such as CNN, LSTM, CNN-LSTM, Transformer, and TCN, and performance was compared to evaluate blade icing. A method for minimizing operating loss is suggested.

Implementation and Verification of Precise Lift-Cruise Dynamics Model Using Flightlab (Flightlab을 활용한 정밀 Lift-Cruise 동역학 모델 구현과 검증)

  • Chi-sung Roh;Daniel Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.4
    • /
    • pp.386-392
    • /
    • 2024
  • This paper constructs a precise dynamics model using flightlab, a specialized program for rotor modeling and performance analysis, to simulate urban air mobility (UAM). flightlab is well-suited for detailed modeling of UAM, particularly requiring detailed aerodynamic characteristics under high-altitude and urban wind conditions. The study focuses on implementing and analyzing a lift-cruise UAM model with distributed propulsion using flightlab. The lift-cruise model integrates motors for vertical take-off and fixed-wing flight. Given the limited specific examples of such UAM models in flightlab and challenges in evaluating with conventional fixed-wing or drone models, this research implements and verifies the lift-cruise model using matlab, comparing its performance against flightlab results to validate the modeling approach. This research aims to explore the potential of flightlab for detailed UAM modeling and contribute to technological advancements in future urban transportation.

Dynamic analysis of slack moored spar platform with 5 MW wind turbine

  • Seebai, T.;Sundaravadivelu, R.
    • Ocean Systems Engineering
    • /
    • v.1 no.4
    • /
    • pp.285-296
    • /
    • 2011
  • Spar platforms have several advantages for deploying wind turbines in offshore for depth beyond 120 m. The merit of spar platform is large range of topside payloads, favourable motions compared to other floating structures and minimum hull/deck interface. The main objective of this paper is to present the response analysis of the slack moored spar platform supporting 5MW wind turbine with bottom keel plates in regular and random waves, studied experimentally and numerically. A 1:100 scale model of the spar with sparD, sparCD and sparSD configuration was studied in the wave basin ($30{\times}30{\times}3m$) in Ocean engineering department in IIT Madras. In present study the effect of wind loading, blade dynamics and control, and tower elasticity are not considered. This paper presents the details of the studies carried out on a 16 m diameter and 100 m long spar buoy supporting a 90 m tall 5 MW wind turbine with 3600 kN weight of Nacelle and Rotor and 3500 kN weight of tower. The weight of the ballast and the draft of the spar are adjusted in such a way to keep the centre of gravity below the centre of buoyancy. The mooring lines are divided into four groups, each of which has four lines. The studies were carried out in regular and random waves. The operational significant wave height of 2.5 m and 10 s wave period and survival significant wave height of 6 m and 18 s wave period in 300 m water depth are considered. The wind speed corresponding to the operational wave height is about 22 knots and this wind speed is considered to be operating wind speed for turbines. The heave and surge accelerations at the top of spar platform were measured and are used for calculating the response. The geometric modeling of spar was carried out using Multisurf and this was directly exported to WAMIT for subsequent hydrodynamic and mooring system analysis. The numerical results were compared with experimental results and the comparison was found to be good. Parametric study was carried out to find out the effect of shape, size and spacing of keel plate and from the results obtained from present work ,it is recommended to use circular keel plate instead of square plate.

Thermoeconomic Analysis of Hybrid Desiccant Cooling System Driven by District Heating (지역난방에 연계된 하이브리드 제습냉방시스템의 경제성 분석)

  • Ahn, Joon;Kim, Jaeyool;Kang, Byung Ha
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.9
    • /
    • pp.721-729
    • /
    • 2014
  • A hybrid desiccant cooling system (HDCS) that uses a heat pump driven by district heating instead of a sensible rotor can provide an increased energy efficiency in summer. In this paper, the summer operation costs and initial costs of both the HDCS and traditional systems are analyzed using annual equal payments, and national benefits are found from using the HDCS instead of traditional systems. In the analysis results, the HDCS reduces the operation cost by 30 compared to the traditional systems, and each HDCS unit has 0.079 TOE per year of primary energy savings and 0.835 $TCO_2$ per year of $CO_2$ emission reduction more than the traditional systems. If HDCSs were to be installed in 680,000 households by 2020, this would produce a replacement power effect of 463 MW. Despite this savings effect, HDCSs require a government subsidy before they can be supplied because the initial cost is higher than that of traditional systems. Thus, this paper calculates suitable subsidies and suggests a supply method for HDCSs considering the national benefits.

A Study on 3[kW] PMA-RSG Optimal Design for Mobile Power Supply (이동형 전원장치용 3[kW] PMA-RSG의 최적 설계에 대한 연구)

  • Baik, Jei-Hoon;Toliyat, Hamid A.;Kim, Nam-Hun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.6
    • /
    • pp.109-117
    • /
    • 2009
  • In this paper, an analytical model using equivalent magnetic circuits for the PMA-SynRG is presented. The lumped parameter model (LPM) is developed from machine geometry, stator winding and machine operating specifications. By the LPM, magnetic saturation of rotor bridges is incorporated into model and it provides effective means of predicting machine performance for a given machine geometry. The LPM is not as accurate as finite element analysis but the equivalent magnetic circuits provide fast means of analyzing electromagnetic characteristics of PMa-SynRG. It is the main advantage to find the initial design and optimum design. The initial design of PMa_RSG is performed by LPM model and FEM analysis, and the final PMA-RSG design is optimized and identified by FEM analysis considering actual machine design. The linear LPM and the nonlinear LPM are programmed using MATLAB and all of machine parameters are calculated very quickly. To verify justification of the proposed design of PMa-RSM, back-EMF is measured.

A Design Method Considering Torque and Torque-ripple of Interior Permanent Magnet Synchronous Motor by Response Surface Methodology (반응표면분석법에 의한 매입형영구자석동기전동기의 토크와 토크리플을 고려한 설계기법)

  • Baek, Seung-Koo;Jeon, Chang-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.557-564
    • /
    • 2019
  • The characteristics of the torque and torque ripple of Interior Permanent Magnet Synchronous Motor(IPMSM) are influenced by the size and position of the rotor magnet and the size of the stator slot. This paper deals with the optimal design method for improving torque and torque ripplerate for IPMSM using Response Surface Methodology(RSM). Two objective functions of torque output and torque ripple were derived from the sensitivity analysis by Plackett-Burmann(PB) for the characteristic variables affecting torque and torque ripple. Secondary characteristic variables were selected from the derived objective function and RSM secondary regression model function was estimated by the experiment schedule and analysis results according to the Central Composite Design (CCD). The reliability of the secondary regression model was verified using ANOVA table. The analysis according to the experimental schedule was verified by JMAG(Ver. 18.0) which is Finite Element Method(FEM) software. The torque output of IPMSM applied with final characteristic variables was increased torque output by 11.5 % and the torque ripplerate was reduced by 9.1 %.

Design of Brushless Permanent Machine with Skewed Stator for Electrical Power Steering System (전동 조향 장치용 브러쉬리스 영구자석 전동기의 스테이터 스큐 설계)

  • Lee, Choong-Sung;Jung, Kyung-Tae;Hong, Jung-Pyo;Kim, Hae-Joong;Kim, Young-Kyun
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.6
    • /
    • pp.189-197
    • /
    • 2015
  • As enforced the regulation of fuel efficiency, the electrification of automotive components in internal combustion vehicle has been applied instead of hydraulic pressure. A typical example of such parts is the EPS (electric power steering), and it is applied to most automotive at present. In electric power steering system, the core component is motor. The reduction of cogging torque and torque ripple is required to improve steering feeling and reduce NVH (Noise Vibration Harshness) in EPS. Generally the skewed design of stator or rotor is applied in order to reduce cogging torque and torque ripple. This paper propose the design and analysis methodology of Brusheless PMSM (Permanent Magnet Synchronous Motor) which is applied to skewed stator. The proposed methodology is as follows: First Intial Design PMSM with skewed stator for EPS, Second Optimal design using RSM (Response surface method), Third Performance Analysis such as Phase Back EMF, Inductance, Load torque using FEA (Finite Element Method). Finally, the reliability of proposed design methodology will be verified through the experiments of prototype sample.

Design and Structural Safety Evaluation of 1MW Class Tidal Current Turbine Blade applied Composite Materials (복합재료를 적용한 1MW급 조류 발전 터빈 블레이드의 설계와 구조 안전성 평가)

  • Haechang Jeong;Min-seon Choi;Changjo Yang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.7
    • /
    • pp.1222-1230
    • /
    • 2022
  • The rotor blade is an important component of a tidal stream turbine and is affected by a large thrust force and load due to the high density of seawater. Therefore, the performance must be secured through the geometrical and structural design of the blade and the blade structural safety to which the composite material is applied. In this study, a 1 MW class large turbine blade was designed using the blade element momentum (BEM) theory. GFRP is a fiber-reinforced plastic used for turbine blade materials. A sandwich structure was applied with CFRP to lay-up the blade cross-section. In addition, to evaluate structural safety according to flow variations, static load analysis within the linear elasticity range was performed using the fluid-structure interactive (FSI) method. Structural safety was evaluated by analyzing tip deflection, strain, and failure index of the blade due to bending moment. As a result, Model-B was able to reduce blade tip deflection and weight. In addition, safety could be secured by indicating that the failure index, inverse reserve factor (IRF), was 1 or less in all load ranges excluding 3.0*Vr of Model-A. In the future, structural safety will be evaluated by applying various failure theories and redesigning the laminated pattern as well as the change of blade material.