• Title/Summary/Keyword: Rotor

Search Result 5,361, Processing Time 0.035 seconds

A Study of rotor-stator interaction in an axial fan (축류송풍기의 동익과 정익 사이 간격변화에 따른 유동간섭에 관한 연구)

  • Rim, In-Won;Seon, Ho-Su;Joo, Won-Gu;Cho, Kang-Rae
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.819-824
    • /
    • 2000
  • The flow inside an axial turbomachinery must be unsteady. Rotor-stator interaction by two blade rows influences performance, the generation of noise and vibration. So, it will be necessary to study the rotor-stator interaction for the design of an axial fan in which the axial gap between two blade rows is small. In this study, rotor-stator interaction is investigated by experimental methods. The research fan has one stage which consists of 24 rotor blades and 22 stator blades. Three-dimensional velocities measured using $45^{\circ}$ slanted hot wire probe and total pressure is measured using Kiel total pressure probe between rotor and stator with the axial 25%, 55%, 145% of chord length,. This study describes the influence of rotor-stator gap on the flow pattern, performance and loss. The efficiency curve show that the change of the rotor-stator gap make difference in the efficiency. And, the 3-dimensional velocity distribution show that the potential interaction between the rotor and the stator have a great effect on the flow field downstream of rotor, where there are wake flow. various vortices in hub region and leakage vortex in casing region etc.

  • PDF

Two-Dimensional Flow Behavior Through a Stage of an Axial Compressor (축류 압축기내의 2차원 유동 특성)

  • Hong, Seong-Hun;Baek, Je-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.8
    • /
    • pp.2561-2571
    • /
    • 1996
  • The flow in the turbomachinery is very unsteady due to the stator-rotor interaction. It has been indicated that the stator-rotor interaction has three distinct causes of unsteadiness: that is, the viscous vortex shedding, wake rotor interaction and potential stator-rotor interaction. In this paper, the mechanism of unsteady potential interaction and wake interaction in the stator-rotor stage flow is numerically investigated in two-dimensional view point. The numerical technique used is the upwind scheme of Van Leer's Flux Vector Splitting(FVS) and cubic spline interpolation is applied on zonal interface. Then, the flow field of a compressor stage composed of NACA 65410 is analyzed. Flow fields are found to be simulated reasonably by this method and the sensitivity due to back-pressure variation is more stronger than rotor-velocity variation.

Effects of Rotor Misalignment in Airgap on Dynamic Response of an Eccentric Rotor in BLDC Motor

  • Kim, Tae-Jong;Kim, Kyung-Tae;Hwang, Sang-Moon;Park, No-Gill;Lee, Shi-Bok
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.12
    • /
    • pp.1576-1582
    • /
    • 2002
  • Vibration of a BLDC motor is a coupled phenomenon between mechanical characteristics and magnetic origins which takes place through the motor airgap. When relative misalignment of a rotor in the airgap is introduced during assembly, the dynamic characteristics of the motor system are affected. The rotor-motor system used in a washing machine is modeled using FETM and magnetic forces in a BLDC motor with radial rotor eccentricity are determined analytically The transient whirl responses of a rotor system supported on two roller bearings with relative misalignment in the motor airgap are investigated by considering mechanical and magnetic coupling effects. Results show that rotor misalignment in the airgap considerably affects the vibration of the rotor-motor system.

The Design & Manufacture of Multi-coil Eddy Current Sensor and Characteristic Analysis (다중코일 와전류 센서 설계제작 및 특성분석)

  • Ahn, Y.S.;Gil, D.S.;Park, S.G.
    • Journal of Power System Engineering
    • /
    • v.15 no.3
    • /
    • pp.65-69
    • /
    • 2011
  • This paper introduces the multi-coil eddy current sensor and its characteristic in magnetic material gas turbine rotor. In the past, magnetic particle inspection method was used for qualitative defect evaluation in magnetic material gas turbine rotor. And the ultrasonic inspection method was used for quantitative defect evaluation. Nowadays, eddy current method is used in magnetic gas turbine rotor inspection due to advanced sensor design technology. We developed multi-coil eddy current sensor for the rotor dovetail inspection. At first, rotor stress is analyzed for the determination of sensor position and number. The sensor coils are designed to cover the stress concentration area of rotor dovetail. We select optimum frequency according to material standard penetration data and experiment results. The rotor mock-up and artificial defects were made for the signal detection and resolution analysis of multi-coil eddy current sensor. The results show that signal detection and resolution capabilities are enhanced in comparison to the commercialized sensor enough for the gas turbine rotor inspection. So, this developed multi-coil eddy current sensor substituted for commercialized one and it applied in real gas turbine rotor inspection.

Rotor Performance Optimization of the Canard Rotor Wing Aircraft (Canard Rotor Wing 항공기의 로터 성능 최적화 연구)

  • Jeon, Kwon-Su;Lee, Jae-Woo;Byun, Yung-Hwan;Yu, Yung H.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.2
    • /
    • pp.105-114
    • /
    • 2008
  • In this study, the sizing and performance analysis program is developed for the canard rotor wing(CRW) aircraft which operates in dual modes (fixed wing mode and rotary wing mode). The developed program is verified for both fixed wing and rotary wing modes using the existing aircraft data and the design optimization formulation is made to perform the reconnaissance mission. For the canard rotor wing aircraft optimization , multi-objective function is constructed to consider both the fixed wing mode and rotary wing mode the weighting factor. For six design cases with different weighting factors and different design constraints, the optimization is performed and improved rotor design results are derived.

Speed-Sensorless Induction Motor Control System using a Rotor Speed Compensation (회전자 속도보상을 이용한 센서리스 유도전동기 제어 시스템)

  • Jeong Gang-Youl
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.3
    • /
    • pp.154-161
    • /
    • 2005
  • This paper proposes a speed-sensorless induction motor control system using a rotor speed compensation. To explain the proposed system, this paper describes an induction motor model in the synchronous reference frame for the vector control. The rotor flux is estimated by the rotor flux observer using the reduced-dimensional state estimator technique. The estimated rotor speed is directly obtained from the electrical frequency, the slip frequency, and the rotor speed compensation with the estimated q-axis rotor flux. The error of the rotor time constant is indirectly reflected in the rotor speed compensation using the compensation of the flux error angle. To precisely estimate the rotor flux, the actual value of the stator resistance, whose actual variation is reflected, is derived. An implementation of pulse-width modulation (PWM) pulses using an effective space vector modulation (SVM) is briefly mentioned. For fast calculation and improved performance of the proposed algorithm, all control functions are implemented in software using a digital signal processor (DSP) with its environmental circuits. Also, it is shown through experimental results that the proposed system gives good performance for the speed-sensorless induction motor control.

LINBAR DECOUPLING CONTROL OF ROTOR SPEED AND ROTOR FLUX IN INDUCTION MOTOR FOR HIGH DYNAMIC PERFORMANCE AND MAXIMAL POWER BFFICLENCY (동적 고성능과 최대 전력 효율을 위한 유도 전동기 회전자 속도와 회전자 자속의 선형 비간섭 제어)

  • Kim, Dong-Il;Ha, In-Joong;Ko, Myoung-Sam;Park, Jae-Wha
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.48-53
    • /
    • 1989
  • We attempt to achieve both high dynamic performance and maximal power efficiency by means of linear decoupling of rotor speed (or motor torque) and rotor flux. The induction motor with our controller possesses the input-output dynamic characteristics of a linear system such that the rotor speed (or motor torque) and the rotor flux are decoupled. The rotor speed (or motor torque) responses are not affected by abrupt changes in the rotor flux and vice versa. The rotor flux need not be measured but is estimated by the well-known flux simulator. The effect of large variation in the rotor resistance on the control performances is minimized by employing a parameter adaptation method. To illuminate the significance of our work. we present simulation and experimental results as well as mathematical performance analyses.

  • PDF

Fabrication and Mixing Characteristics of a Micro-Mixer with a Quasi-Active Rotor (준 능동형 로터를 이용한 마이크로 혼합기의 제작 및 혼합특성)

  • Kim, Young-Dae;Lee, Jong-Kwang;Kwon, Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.4
    • /
    • pp.417-424
    • /
    • 2009
  • A micro-mixer with a quasi-active rotor was fabricated, and mixing characteristics were evaluated. The proposed micro-mixer combines an active type micro-mixer with a passive type micro-mixer. The micro-rotor, which is a moving part of an active type micro-mixer, is added in a micro-chamber of a passive type vortex micro-mixer. The rotor rotated by inflows tangent to a chamber, causing strong perturbations. The micro-mixers were fabricated using photosensitive glass. Mixing efficiency of the micro-mixers was measured using an image analysis method. Mixing efficiency and characteristics of the micro-rotor mixer were compared with the vortex micro-mixer without a rotor. Mixing efficiency was reduced as Reynolds number increased at a low Reynolds number due to decrease of residence time. Mixing efficiency at higher Reynolds number, on the other hand, was improved even though residence time decreased since the contact surface between fluids increased by twisted flow. The perturbation induced by rotating rotor at greater than Re 200 improved the efficiency of the rotor mixer.

AERODYNAMIC EFFECTS OF THE TAB ON A HOVERING ROTOR BLADE (정지비행 로터 블레이드에 부착된 탭의 공기역학적 효과)

  • Kang, H.J.;Kim, D.H.;Kim, S.H.
    • Journal of computational fluids engineering
    • /
    • v.18 no.3
    • /
    • pp.60-66
    • /
    • 2013
  • Numerical simulation was performed for the rotor blade with fixed tab in hover using an unstructured mesh Navier-Stokes flow solver. The inflow and outflow boundary conditions using 1D momentum and 3D sink theory were applied to reduce computational time. Calculations were performed at several operating conditions of varying collective pitch angle and fixed tab length. The aerodynamic effect of fixed tab length was investigated for hovering efficiency, pitching moment and flapping moment of the rotor blade. The results show that it affects linearly increasing on the pitching moment of the rotor blade but does not affect on the flapping moment. The required power is less than 45kw for ground rotating test in hover. Numerical simulations also show that the vortex generate not only from the tip of the rotor blade but also from the fixed tab on the rotor blade.

Flow Analysis around Tilt-rotor Aircraft at Various Tilt Angles (틸트각 변화에 따른 틸트로터 항공기 주위의 유동해석)

  • Kim, Su-Yean;Choi, Jong-Wook
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.2
    • /
    • pp.40-47
    • /
    • 2011
  • Tilt-rotor aircraft can be used in various fields because they have the capabilities of the vertical take-off and landing and the high-speed cruise flight. In the present study, the flow analysis of a tilt-rotor aircraft is conducted at various tilt angles. The lift and drag forces of the tilt-rotor aircraft are obtained and the wakes by the rotor-blade are visualized. The result shows that the rotor-blade affects the lift force in a hovering mode and the main wing has an influence on the lift force in a cruise mode. Additional thrust is required at the tilt angle of around 40 degree due to the least lift force. The drag force is dependent on the rotor-blade at overall tilt angles. The minus drag force appears between the tilt angles of 90 degree and 55 degree. Also, the drag force is dramatically increased at the other tilt angles. The wake by rotor-blade affects the flow around the fuselage of the tilt-rotor aircraft at the tilt angles of 75 degree and 60 degree.