• 제목/요약/키워드: Rotational tolerance

Search Result 27, Processing Time 0.09 seconds

Effect on the Compliance of Spindle -Bearing System by the Assembling Tolerance (축-베어링계의 컴플라이언스 특성에 미치는 조립공차의 영향)

  • 이강재;서장력;이선규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.995-999
    • /
    • 1995
  • In spindle-bearing system, the displacement characteristics of the bearing by the load applied on the spindle are affected greatly by the assembling tolerance between the spindle and housing assembled to support the bearing. Also in spindle system of rotational operation, the compliance characteristic of the bearing is expected to be varied frequently by the thermal deformation of the spindle and the housing. To predict the thermal deformation of the spindle including heat generation of the bearing, we need to examine the effect on the compliance of spindle-bearing system by the assembling tolerance. In this paper, we proposed the load-displacement relation expression considering the effect which the variation of contact pressure due to the radial directional assembling tolerance between the bearing and the housing influences on the axial and radial directional displacement characteristics of the bearing. Furthermore, for several assembling systems of bearings and housings having all different assembling tolerances, we proposed a method to predict exactly the variation of the bearing preload which is sensitive to the thermal deformation by showing the propriety with experimental results.

  • PDF

A Semigenerative Process Planning System for Rotational Parts (회전형상제품의 가공을 위한 컴퓨터 지원 공정계획 시스템)

  • Rhee, Jin-Soo;Choi, Hoo-Gon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.19 no.4
    • /
    • pp.49-70
    • /
    • 1993
  • The purpose of this study was to develop a semigenerative process planning system for the turning processes required for rotational parts. The system developed in this study showed three major roles for a given part : selection of appropriate turning processes, scheduling of selected processes, and selection of appropriate tools to be used for selected processes. Four information files and six modules were developed to produce a process plan. When geometric features, dimension, tolerance, material types, and surface finish data are inputted to the system, optimal processes, processing sequences, selected tools, and machining costs are to be produced as a process plan.

  • PDF

A Study on the Squareness of Circular Pocket Machining of SCM415 Steel (SCM415강의 원형포켓 가공시 직각도에 관한 연구)

  • Kim, Jin-su;Choi, Chul-Woong;Shin, Mi-Jung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.7
    • /
    • pp.42-47
    • /
    • 2019
  • In this research, we try to study the change of squareness in the cutting process while changing cutting conditions such as feed rate and spindle rotational speed with chromium molybdenum steel (SCM415) material and TiCN, TiAlN coated end mill tool. The TiCN coating tool had the best straightness at 4,000 rpm at a feed rate of 200 mm/min. The TiAlN coating tool was best measured at 3,000 rpm at a feed rate of 200 mm/min. TiAlN coated tools had excellent dimensional tolerance when comparing the coating tool specifics.

Fabrication of a Circular Coil for the Study on the Magnetic Field Tolerance of TMP

  • Baik, Kyungmin;Cheung, Wan-Sup;Lim, Jong-Yeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.153-153
    • /
    • 2013
  • Turbomolecular pump (TMP) is widely used to obtain and maintain high vacuum by spinning turbine rotors to migrate gas molecules to the exhaust of the pump. However, performance of the TMP has not been well observed when it is influenced by strong magnetic field. Such study may give useful information about magnetic field tolerance of TMP, development of magnetic shielding technique for key components of TMP, etc. For this purpose, magnetic field induced by a circular current source was firstly designed and investigated. Using spherical coordinates and vector potential, magnetic field throughout the space including axis of rotation was calculated. Due to the rotational symmetry of the circular current source, induced magnetic field is azimuthally symmetric and, thus, is analyzed by radial and polar components of the magnetic fields. In order to enhance the numerical accuracy for the calculation, magnetic field was expressed by complete elliptic integrals of first and second kinds. According to the calculation, when 1 A of DC-current passes through a 1 turned circular wire with 50 cm of diameter, overall magnitude of the inducedmagnetic field was about 0.02 Gauss, which was used to the determination of the current and the number of turns of wires to fabricate the coil for the study on the magnetic field tolerance of TMP.

  • PDF

Rotational Wireless Video Sensor Networks with Obstacle Avoidance Capability for Improving Disaster Area Coverage

  • Bendimerad, Nawel;Kechar, Bouabdellah
    • Journal of Information Processing Systems
    • /
    • v.11 no.4
    • /
    • pp.509-527
    • /
    • 2015
  • Wireless Video Sensor Networks (WVSNs) have become a leading solution in many important applications, such as disaster recovery. By using WVSNs in disaster scenarios, the main goal is achieving a successful immediate response including search, location, and rescue operations. The achievement of such an objective in the presence of obstacles and the risk of sensor damage being caused by disasters is a challenging task. In this paper, we propose a fault tolerance model of WVSN for efficient post-disaster management in order to assist rescue and preparedness operations. To get an overview of the monitored area, we used video sensors with a rotation capability that enables them to switch to the best direction for getting better multimedia coverage of the disaster area, while minimizing the effect of occlusions. By constructing different cover sets based on the field of view redundancy, we can provide a robust fault tolerance to the network. We demonstrate by simulating the benefits of our proposal in terms of reliability and high coverage.

Study on the Accuracy of Vessel Measurement According to Table Object Distance Changes (혈관조영장비의 테이블-피사체간 거리 변화에 따른 혈관측정 정확도 연구)

  • Kim, Seung-Gi
    • Journal of radiological science and technology
    • /
    • v.42 no.6
    • /
    • pp.435-440
    • /
    • 2019
  • This is to study the accuracy of the actual size according to the TOD(table object distance; TOD) change when measuring blood vessels using angiography equipment, and to help the optimal selection of the device used accordingly. Balls similar to the size of common vessels were calibrated with TOD using 30 mm, 20 mm, 10 mm, 5 mm and acrylic phantoms, catheter calibration from 0 cm to 10 cm, 20 cm and 30 cm, respectively. It was measured whether there was a change in the measured value according to the change. The equipment used was GE Innova 3131 IQ equipment, and the image reconstruction method was GE AW4.7 post processing program. Two radiotechnologists were scanned three times by catheter calibration method and 3DRA(3dimension rotational angiography; 3DRA) volume rendering method. The independent sample T-test showed 0.981 (p> 0.05) to verify the significance between the two observers. As a result, in case of catheter calibration, the error rate at TOD 0 mm and 10 mm is within ± 10%, but when the TOD is changed to 20 mm and 50 mm respectively, the tolerance is ± 10% except for 30 mm ball exceeded. On the other hand, 3DRA was included within the tolerance range of ± 10% overall even when the TOD was changed from 0 mm to 50 mm. In the catheter calibration method, the larger the TOD, the larger the error range, and the 3DRA method was able to measure vascular vessels accurately close to the actual measurement without any consideration of the TOD.

An Adaptive-Bandwidth Referenceless CDR with Small-area Coarse and Fine Frequency Detectors

  • Kwon, Hye-Jung;Lim, Ji-Hoon;Kim, Byungsub;Sim, Jae-Yoon;Park, Hong-June
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.3
    • /
    • pp.404-416
    • /
    • 2015
  • Small-area, low-power coarse and fine frequency detectors (FDs) are proposed for an adaptive bandwidth referenceless CDR with a wide range of input data rate. The coarse FD implemented with two flip-flops eliminates harmonic locking as long as the initial frequency of the CDR is lower than the target frequency. The fine FD samples the incoming input data by using half-rate four phase clocks, while the conventional rotational FD samples the full-rate clock signal by the incoming input data. The fine FD uses only a half number of flip-flops compared to the rotational FD by sharing the sampling and retiming circuitry with PLL. The proposed CDR chip in a 65-nm CMOS process satisfies the jitter tolerance specifications of both USB 3.0 and USB 3.1. The proposed CDR works in the range of input data rate; 2 Gb/s ~ 8 Gb/s at 1.2 V, 4 Gb/s ~ 11 Gb/s at 1.5 V. It consumes 26 mW at 5 Gb/s and 1.2 V, and 41 mW at 10 Gb/s and 1.5 V. The measured phase noise was -97.76 dBc/Hz at the 1 MHz frequency offset from the center frequency of 2.5 GHz. The measured rms jitter was 5.0 ps at 5 Gb/s and 4.5 ps at 10 Gb/s.

Robust Design of an Automobile Ball Joint Considering the Worst-Case Analysis (차량용 볼조인트의 최악 조건을 고려한 강건 설계)

  • Sin, Bong-Su;Kim, Seong-Uk;Kim, Jong-Kyu;Lee, Kwon-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.1
    • /
    • pp.102-111
    • /
    • 2017
  • An automobile ball joint is the element for connecting the control arm and the knuckle arm, allowing rotational motion. The ball joint consists of the stud, plug, socket, and seat. These components are assembled through the caulking process that consists of plugging and spinning. In the existing research, the pull-out strength and gap stiffness were calculated, but we did not consider the uncertainties due to the numerical analysis and production. In this study, the uncertainties of material property and tolerance are considered to predict the distributions of pull-out strength and gap stiffness. Also, pull-out strength and gap stiffness are predicted as the a distribution rather than one deterministic value. Furthermore, a robust design applying the Taguchi method is suggested.

Development of 3-Axis Actuator for Active Tilt Compensation (틸트 구동형 엑추에이터의 개발)

  • 이강녕;박세준;이동주;박노철;조원익;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.226-233
    • /
    • 2003
  • There are many researches going on to develop the information storage devices using Blue-ray disc and DVD as a demand for high-density information storage devices is highly increasing. This high-density information storage device requires a short-wave laser and objective lens of high numerical aperture set in fer its operation. And, that brings out rapid decrease of tilt tolerance. Therefore, it is necessary that an actuator should control tilt motions to get a stable signal. In this paper, a new mathematical form of 3-D.O.F coupled model is formulated and magnetic circuit in constraints is most effectively designed with the use of the moving coil type actuator in higher sensitivity. Further, this paper presents a tilt coil whose rotational center point is put on that of the lens through the variation of tilt coil and proposes a 3-axis actuator with high sensitivity improved in its dynamic property through its structure analysis.

  • PDF

A Study on Dimensional Accuracy in Circular Pocket Machining of SCM415 Steel (SCM415강의 원형포켓 가공시 치수정밀도에 관한 연구)

  • Shin, Mi-Jung;Choi, Chul-Woong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.9
    • /
    • pp.58-63
    • /
    • 2019
  • In this research, we examine the change of dimensional accuracy in the cutting process while changing cutting conditions such as feed rate and spindle rotational speed with chromium molybdenum steel (SCM415) material and TiCN- and TiAlN-coated end mill tools. According to dimensional accuracy measurement, TiCN-coated tool displays the most accurate dimensional tolerance at ${\varnothing}20mm$ at feed rates of 200 mm/min and 250 mm/min at a spindle rotation speed of 4,000 rpm. The largest dimension of the coating tool was able to make the TiAlN-coated tool suitable when comparing the smallest dimension.