• Title/Summary/Keyword: Rotational temperature

Search Result 351, Processing Time 0.023 seconds

Apparent Viscosity Properties of Electro-Rheological Fluid by Using Rotational Viscometer (회전식 점도계를 이용한 ERF의 겉보기 점도 특성)

  • 장성철;이진우;김태형;박종근
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.196-201
    • /
    • 2001
  • Electro-Rheological(ER) fluids change their apparent viscosity according to the electric field strength. Therefore, there are many practical applications using the ER fluids. ER effect on the dispersive system of polarizable fine powder/dielectric oil has been investigated. The electrical and rheological properties of starch based ER fluid were reported. Yield stress of the fluids were measured on the couette cell type rheometer as a function of electric fields, particle concetrations, and temperatures. The electric field is applied by high voltage DC power supply, The outer cup is connected to positive electrode(+) and the bob becomes ground(-). And the temperatures the viscosity(or shear stress) versus shear rates were measured. In this experiment shear rates were increased from 0 to 200s$^{-1}$ in 2 minutes. This thesis presents Bingham properties of ER fluids subjected to temperature variations. The temperature dependence of the viscosity was determined for ER fluids consisting of 35 weight % starch particles in automatic transmission oil.

  • PDF

Dynamic Performance Simulation of the Propulsion System for the CRW-Type UAV Using SIMULINK (SIMULINK를 이용한 CRW-type UAV 추진시스템의 동적 성능 모사에 관한 연구)

  • Kong Chang-Duk;Park Jong-Ha
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.4
    • /
    • pp.76-83
    • /
    • 2004
  • A Propulsion System of the CRW(Canard Rotor Wing) type UAV(Unmanned Aerial Vehicle) was composed of the turbojet engine to generate the propulsive exhaust gas, and the duct system including main and rotary ducts, the nozzle subsystem including main and tip jet nozzle for three flight modes such as lift/landing mode, low speed transition flight mode and high speed forward flight mode. Transient simulation performance utilized the ICV (Inter-component volume) method and simulated using the SIMULINK. Transient performance analysis was performed on 3 cases. Fuel flow schedules to accelerate from Idle to maximum rotational speed were divided into the step increase of the most severe case and ramp increase cases to avoid the overshoot of turbine inlet temperature, and variations of thrust and the turbine inlet temperature were investigated in some transient analysis cases.

QUANTIFYING DARK GAS

  • LI, DI;XU, DUO;HEILES, CARL;PAN, ZHICHEN;TANG, NINGYU
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.75-78
    • /
    • 2015
  • A growing body of evidence has been supporting the existence of so-called "dark molecular gas" (DMG), which is invisible in the most common tracer of molecular gas, i.e., CO rotational emission. DMG is believed to be the main gas component of the intermediate extinction region from Av~0.05-2, roughly corresponding to the self-shielding threshold of $H_2$ and $^{13}CO$. To quantify DMG relative to $H{\small{I}}$ and CO, we are pursuing three observational techniques; $H{\small{I}}$ self-absorption, OH absorption, and THz $C^+$ emission. In this paper, we focus on preliminary results from a CO and OH absorption survey of DMG candidates. Our analysis shows that the OH excitation temperature is close to that of the Galactic continuum background and that OH is a good DMG tracer co-existing with molecular hydrogen in regions without CO. Through systematic "absorption mapping" by the Square Kilometer Array (SKA) and ALMA, we will have unprecedented, comprehensive knowledge of the ISM components including DMG in terms of their temperature and density, which will impact our understanding of galaxy evolution and star formation profoundly.

Theoretical Analysis of a Rotary Heat Exchanger Based on a Simplified Model (단순모델에 의한 회전형 열교환기 이론해석)

  • Son, Sung Gyun;Kim, Yongchan;Lee, Dae-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.8
    • /
    • pp.409-417
    • /
    • 2015
  • A simplified rotary heat-exchanger model was developed with an assumption of a linear temperature distribution along the flow direction. Based on the model, the exact fluid solution and solid temperature variations were obtained and verified from a comparison with previous numerical studies. The heat transfer in the rotary heat exchanger was investigated using the theoretical solutions. The heat exchanger's effectiveness was shown to be saturated, with a rotational-speed increase that is higher than a critical value that is solely dependent on the thermal capacity of the solid matrix but independent of the fluid flow rate; the saturated value of the effectiveness was determined only by the NTU of the heat exchanger. Where the thermal diffusivity of the solid matrix is so slight that the thermal penetration depth becomes smaller than the matrix thickness, the effective thermal capacity of the solid matrix decreased according to the penetration depth.

A Study on the Viscosity and Surface Tension for Foaming Materials and the Effects of Addition Elements (발포재료(Al)의 점성 및 표면장력과 첨가요소의 영향에 관한 연구)

  • Park, Soo-Han;Kim, Sang-Youl;Ahn, Duck-Kyu;Ha, Dong-In;Cho, Soon-Hyung;Bae, Suk-Cheon;Hur, Bo-Young
    • Korean Journal of Materials Research
    • /
    • v.12 no.9
    • /
    • pp.729-734
    • /
    • 2002
  • Porous Al metal was produced by batch type casting process. In this foaming process, the viscosity and surface tension of molten Al as two most important factors have been investigated in the temperature range of 680-95$0^{\circ}C$ by the ring method and rotational method respectively. The experimental results showed that both the surface tension and viscosity of the melt decreased linearly with increasing temperature. Addition of Ca decreased surface tension, but increased viscosity significantly.

Thermodynamic non-equilibrium and anisotropy in Mars atmosphere entry

  • Zuppardi, Gennaro
    • Advances in aircraft and spacecraft science
    • /
    • v.8 no.1
    • /
    • pp.1-15
    • /
    • 2021
  • Mars exploration demands aerodynamic computations for a proper design of missions of spacecraft carrying instruments and astronauts to Mars. Both Computational Fluid Dynamics (CFD) and Direct Simulation Monte Carlo (DSMC) method play a key role for this purpose. To the author's knowledge, the altitude separating the fields of applicability of CFD and DSMC in Mars atmosphere entry is not yet clearly defined. The limitations in using DSMC at low altitudes are due to technical limitations of the computer. The limitations in using CFD at high altitudes are due to thermodynamic non-equilibrium. Here, this problem is studied in Mars atmosphere entry, considering the Mars Pathfinder capsule in the altitude interval 40-80 km, by means of a DSMC code. Non-equilibrium is quantified by the relative differences between translational temperature and: rotational (θt-r), vibrational (θt-v), overall (θt-ov) temperatures, anisotropy is quantified by the relative difference between the translational temperature component along x and those along y (θx-y) and along z (θx-z). The results showed that θt-r, θt-v, θx-y, θx-z are almost equivalent. The altitude of 45 km should be the limit altitude for a proper use of a CFD code and the altitude of 40 km should be the limit altitude for a reasonable use of a DSMC code.

A Numerical Investigation on Restrained High Strength Q460 Steel Beams Including Creep Effect

  • Wang, Weiyong;Zhang, Linbo;He, Pingzhao
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1497-1507
    • /
    • 2018
  • Most of previous studies on fire resistance of restrained steel beams neglected creep effect due to lack of suitable creep model. This paper presents a finite element model (FEM) for accessing the fire resistance of restrained high strength Q460 steel beams by taking high temperature Norton creep model of steel into consideration. The validation of the established model is verified by comparing the axial force and deflection of restrained beams obtained by finite element analysis with test results. In order to explore the creep effect on fire response of restrained Q460 steel beams, the thermal axial force and deflection of the beams are also analyzed excluding creep effect. Results from comparison infer that creep plays a crucial role in fire response of restrained steel beam and neglecting the effect of creep may lead to unsafe design. A set of parametric studies are accomplished by using the calibrated FEM to evaluate the governed factors influencing fire response of restrained Q460 steel beams. The parametric studies indicate that load level, rotational restraint stiffness, span-depth ratio, heating rate and temperature distribution pattern are key factors in determining fire resistance of restrained Q460 steel beam. A simplified design approach to determine the moment capacity of restrained Q460 steel beams is proposed based on the parametric studies by considering creep effect.

Vibration response of rotating carbon nanotube reinforced composites in thermal environment

  • Ozge Ozdemir;Ismail Esen;Huseyin Ural
    • Steel and Composite Structures
    • /
    • v.47 no.1
    • /
    • pp.1-17
    • /
    • 2023
  • This paper deals with the free vibration behavior of rotating composite beams reinforced with carbon nanotubes (CNTs) under uniform thermal loads. The temperature-dependent beam material is assumed to be a mixture of single-walled carbon nanotubes (SWCNTs) in an isotropic matrix and five different functionally graded (FG) distributions of CNTs are considered according to the variation along the thickness, namely the UD-uniform, FG-O, FG-V, FG-Λ and FG-X distributions where FG-V and FG-Λ are unsymmetrical patterns. Considering the Timoshenko beam theory (TBT), a new finite element formulation of functionally graded carbon nanotube reinforced composite (FGCNTRC) beam is created for the first time. And the effects of several essential parameters including rotational speed, hub radius, effective material properties, slenderness ratio, boundary conditions, thermal force and moments due to temperature variation are considered in the formulation. By implementing different boundary conditions, some new results of both symmetric and non-symmetrical distribution patterns are presented in tables and figures to be used as benchmark for further validation. In addition, as an alternative advanced composite application for rotating systems exposed to thermal load, the positive effects of CNT addition in improving the dynamic performance of the system have been observed and the results are presented in several tables and figures.

Static stability and vibration response of rotating carbon-nanotube-reinforced composite beams in thermal environment

  • Ozge Ozdemir;Huseyin Ural;Alexandre de Macedo Wahrhaftig
    • Advances in nano research
    • /
    • v.16 no.5
    • /
    • pp.445-458
    • /
    • 2024
  • The objective of this paper is to present free vibration and static stability analyses of rotating composite beams reinforced with carbon nanotubes (CNTs) under uniform thermal loads. Beam structural equations and CNT-reinforced composite (CNTRC) beam formulations are derived based on Timoshenko beam theory (TBT). The temperature-dependent properties of the beam material, such as the elastic modulus, shear modulus, and material density, are assumed to vary over the thickness according to the rule of mixture. The beam material is modeled as a mixture of single-walled carbon nanotubes (SWCNTs) in an isotropic matrix. The SWCNTs are aligned and distributed in the isotropic matrix with different patterns of reinforcement, namely the UD (uniform), FG-O, FG-V, FG- Λ and FG-X distributions, where FG-V and FG- Λ are asymmetric patterns. Numerical examples are presented to illustrate the effects of several essential parameters, including the rotational speed, hub radius, effective material properties, slenderness ratio, boundary conditions, thermal force, and moments due to temperature variation. To the best of the authors' knowledge, this study represents the first attempt at the finite element modeling of rotating CNTRC Timoshenko beams under a thermal environment. The results are presented in tables and figures for both symmetric and asymmetric distribution patterns, and can be used as benchmarks for further validation.

CFD Performance Analysis and Design of a 8kW Class Radial Inflow Turbine for Ocean Thermal Energy Conversion Using a Working Fluid of Ammonia (암모니아 작동유체를 이용한 해수온도차발전용 8kW급 구심터빈의 설계 및 CFD 성능해석)

  • Mo, Jang-Oh;Cha, Sang-Won;Kim, You-Taek;Lim, Tae-Woo;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.8
    • /
    • pp.1030-1035
    • /
    • 2012
  • In this research, we analysed design and CFD analysis of an inflow radial turbine for OTEC with an output power of 8kW using an working fluid of ammonia. The inflow radial turbine consists of scroll casing, vain nozzle with 18 blade numbers and rotor blade with 13 blade numbers. Mass flow rate, and inlet temperature are 0.5kg/s and $25^{\circ}C$ respectively, and variable rotational speeds were applied between 12,000 and 36,000 with 3,000 rpm intervals. As the results according to the rotational speeds, the designed speed is 24,000 rpm where maximum efficiency exists. The maximum efficiency and output power are 88.66% and 8.52kW, respectively. Through this study, we expect that the analysed results will be used as the design material for the composition of the turbine optimal design parameters corresponding to the target output power under various working material conditions.