• Title/Summary/Keyword: Rotational speed

Search Result 1,123, Processing Time 0.038 seconds

Oil-Jet Ball 윤활시 가스터빈용 고속 Ball Bearing 윤활특성

  • 김기태;권우성
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1996.04b
    • /
    • pp.86-93
    • /
    • 1996
  • The lubrication characteristics of high-speed ball bearings has been investigated empirically using 45mm bore split inner ring ball bearings employed in small industrial gas turbine engines with oil-jet lubrication method. For the close structural simulation, experiments carried out with bearing mounting supports of real engines, such as bearing housings and oil nozzle assemblies with squeeze film dampers. Thus the results of tests can be directly applied to the design and the development of gas turbine engines. Testing was done by varying operating speeds, axial load on bearings, and lubricant flowrates. During testing, the temperature of bearing at outer-ring face, the power consumption of the driving motor, and the rotating resistance of the bearing were measured. From this study, the representative factors for lubrication characteristics at high speed was found, and the most important one was not operating speed but axial load up to 1.95 million dmN speed and 303 kgf axial load. Furthermore, the detailed variation of the rotational resistance of the bearing could be visualized by measuring the change of the radial load under the bearing supports. The rotational resistance consists of the frictional resistance and the bearing-cavity oil resistance.

  • PDF

A Study on the Low Cost Testing System Development of the Low Speed and High Torque Harsh Reducer (저속 고토크 가혹감속기의 저비용 테스트 시스템 개발에 관한 연구)

  • Park, Taehyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.3
    • /
    • pp.379-386
    • /
    • 2022
  • The goal of this research is to verify a performance test system for a low speed, high torque, and harsh reducer at low cost. The reducer rotates a cooling fan with a diameter of 10 meters, in a high temperature (50℃) cooling tower in a geothermal power plant. It requires about 500 kgf·m torque and 47.75 kW power to rotate the fan at a maximum power condition. An expensive dynamometer is commonly used for performance test of a motor or a reducer. In this paper, a low cost system is developed using a hydraulic pump as a load unit to generate torque instead of a dynamometer. We accurately calculated the required power, the flow meter, and the pressure of the pump, and selected to design and optimize the system at minimal cost. The system also applied another reverse reducer and a gearbox to increase the rotational speed and to reduce the torque from the low speed and high torque target reducer. This allows low-cost systems to be built using inexpensive components. The developed system was able to successfully measure the high torque and the low rotational speed of the target reducer at high temperature.

Development of threshing cylinder simulation model of combine harvester for high-speed harvesting operation

  • Min Jong Park;Hyeon Ho Jeon;Seung Yun Baek;Seung Min Baek;Su Young Yoon;Jang Young Choi;Ryu Gap Lim;Yong Joo Kim
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.3
    • /
    • pp.457-468
    • /
    • 2023
  • The purpose of this study is to develop a high-speed combine harvester. The performance was evaluated by composing a dynamic simulation model of a threshing cylinder and analyzing the amount of threshed rice grain during threshing operations. The rotational speed of the threshing cylinder was set at 10 rpm intervals from 500 rpm until 540 rpm, based on the rated rotational speed of 507 rpm. The rice stem model was developed using the EDEM software using measured rice stem properties. Multibody dynamics software was utilized to model the threshing cylinder and tank comprising five sections below the threshing cylinder, and the threshing performance was evaluated by weighing the grain collected in the threshing tank during threshing simulations. The simulation results showed that section 1 and 2 threshed more grains compared to section 3 and 4. It was also found that when the threshing speed was higher, the larger number of grains were threshed. Only simulation was conducted in this study. Therefore, the validation of the simulation model is required. A comparative analysis to validate the simulation model by field experiment will be conducted in the future.

Effects of the Power Transmission Units on the Rotational Accuracy of A Hydrostatic Spindle (동력전달요소에 따른 유정압 주축의 회전정밀도에 관한 연구)

  • Park, C.H.;Ryu, G.W.;Jung, Y.G.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.2
    • /
    • pp.59-68
    • /
    • 1995
  • In this study, the effects of the power transmission units on the rotational accuracy are investigated experimentally in a hydrostatic spindle. The effects of warm up time, unbalancing and the position of measuring sensor are pre-examined for the determination of measuring conditions. The misalignment of the power transmission units and the vibration excited by the fluctuation of belt are considered as the dominant parameters of error motion. The variation and scatter of run out at the range of 0 to 3,000rpm in rotational speed are appropriated for the camparison of availabilities of the transmission units to precision spin- dles.

  • PDF

An Experimental Study of Tridirectional Vibration of Helical Gears with Different Contact Ratios (물림률이 다른 헬리컬 기어들의 3방향 진동의 실험적 연구)

  • Park, Chan-Il;Jeon, Don-Hyuk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.2 s.119
    • /
    • pp.177-184
    • /
    • 2007
  • The purpose of this study is to investigate experimentally the characteristics of rotational, radial, and axial vibration for helical gears with different contact ratios. For this purpose, the gear box is specially designed and manufactured. Two helical gears with different face widths and reduction ratios are investigated. The gear vibration in each direction is measured by accelerometers attached to the gear body. Rotational vibration is the highest and radial vibration is the lowest in the gear frequencies. While the increase of rotational speed increases gear vibration, it does not always increase with torque. It is not also linearly related to the contact ratio. In addition, axial vibration is not proportional to rotational vibration.

Numerical Simulation of External Gear Pump Using Immersed Solid Method (Immersed Solid Method 를 이용한 외접형 기어 펌프의 수치해석)

  • Yoon, Yong Han;Park, Byung Ho;Han, Yong Oun;Hong, Byeong Joo;Shim, Jaesool
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.1
    • /
    • pp.95-101
    • /
    • 2014
  • In this study, an ISM (immersed solid method) was used for investigating the mass flow rate and efficiency of an involute-gear pump featuring very high rotational speed. For considering circulation flow at the gear pump and housing, fluid flow was assumed as turbulent, and the rotational speed of the gear pump increased under the condition of constant pressure at both the inlet and outlet. The efficiency and mass flow rate of the gear pump were studied by varying its rotational speed and the clearance between the gear tip and the housing. In the simulation results, as the rotational speed were increased, the average mass flow rate and efficiency increased. Furthermore, as the clearance between the gear tip and the housing was increased, the average mass flow rate and efficiency decreased. The efficiency was 85.11, 90.94, and 93.62 at rotational speeds of 6,000 rpm, 8,000 rpm, and 10,000 rpm, respectively, under the condition that there was no clearance. In addition, the efficiency was 93.62, 93.29, and 92.74 at clearances of 0 m, 0.00001 m, and 0.00003 m respectively.

Combustion Characteristics of the Slinger Combustor (슬링거 연소기의 연소특성)

  • 이강엽;이동훈;최성만;박정배;박영일;김형모;한영민
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.1
    • /
    • pp.38-43
    • /
    • 2004
  • The study was performed to understand combustion characteristics of the slinger combustor. Liquid fuel is discharged radially outwards through injection holes drilled in the high speed rotating shaft. The spray test was peformed to verify atomizing characteristics with variation of fuel nozzle rotational speed by using PDPA system. SMD was measured at different RPM and values are 70$\mu\textrm{m}$ at 5,000RPM rpm, 60$\mu\textrm{m}$ at 10,000RPM and 40$\mu\textrm{m}$ at 20,000RPM. In the results, we found out that SMD is grown smaller with increasing rotational speed. In KARI combustion test facility, Ignition and combustion tests were performed by using combustor test rig. In the test results, ignition and combustion efficiency were improved according to increasing rotational speed. The measured radial temperature distribution at the combustor exit shows stable and fairly good distribution.

Development of a Vine Crusher for Harvesting Sweet Potato (고구마 덩굴처리기 개발)

  • Kang, Sung-Il;Yoo, Soo-Nam;Choi, Yong;Kim, Young-Joo
    • Journal of Biosystems Engineering
    • /
    • v.36 no.1
    • /
    • pp.9-14
    • /
    • 2011
  • This study was carried out to develop a vine crusher for harvesting sweet potato. The experimental two-row vine crusher attachable to agricultural tractor composed of vine crushing part with frail type vine crushing blades and vine lifting blades, power transmission part with chain and gear transmission mechanism, crushing height control part with two control wheels and manual levers, and implement frames, was designed and fabricated. And this vine crushing performance was also analyzed. From vine crushing tests, backward travel direction (i.e., rotational direction of the vine crushing blades) showed better vine crushing performance than forward travel direction. Crushing ratio of remained vine was increased, and length of remained vine and length of crushed vine were decreased as working speed was decreased and rotational speed of vine crushing blades was increased. At a working speed of 0.27 m/s and rotational speed of vine crushing blades of 800 rpm, crushing ratio of remained vine was 98%, length of remained vine was 104 mm, and length of crushed vine was 327 mm. But, when crushing vine on irregular ridges, vines and mulching vinyl were wound in the vine crushing part. Therefore, change of location of power transmission chain mechanism, and an automatic control device for controlling crushing height were needed.

Analysis of Statically Indeterminate Bearing-Shaft System and Prediction of the Behavior of Ball Bearing (베어링-축계의 부정정계 해석 및 볼베어링의 거동예측)

  • 김완두;한동철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1993.12a
    • /
    • pp.70-76
    • /
    • 1993
  • From the analysis of shaft-bearing indeterminate system, moment and misalingment angle which was generated in bearing were determined. And the influence of span length between bearings on the fatigue life was established. The equation to estimate the cage rotational speed was proposed, and this equation was verified by the measuring of cage speed and shaft speed. And accoding to quasi-static analysis, the spinning speed of ball was determined.

  • PDF