• Title/Summary/Keyword: Rotational motion estimation

Search Result 29, Processing Time 0.031 seconds

Digital Image Stabilization Using Simple Estimation of Rotational and Translational Motion (회전 및 병진운동 추정을 통한 디지털 영상안정화)

  • Seok, Ho-Dong;Kang, Kil-Soon;Lyou, Joon
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.46-48
    • /
    • 2004
  • This paper presents a simple method of rotational and translational motion estimation for digital image stabilization. The scheme first computes the rotation center by taking least squares of selected local velocity vectors, and the rotational angle is found from special subset of motion vectors. And then translational motion can be estimated by the relation among movement of rotation center, rotation angle and translation movement. To show the effectiveness of our approach, the synthetic images are evaluated, resulting in better performance.

  • PDF

Online Estimation of Rotational Inertia of an Excavator Based on Recursive Least Squares with Multiple Forgetting

  • Oh, Kwangseok;Yi, Kyong Su;Seo, Jaho;Kim, Yongrae;Lee, Geunho
    • Journal of Drive and Control
    • /
    • v.14 no.3
    • /
    • pp.40-49
    • /
    • 2017
  • This study presents an online estimation of an excavator's rotational inertia by using recursive least square with forgetting. It is difficult to measure rotational inertia in real systems. Against this background, online estimation of rotational inertia is essential for improving safety and automation of construction equipment such as excavators because changes in inertial parameter impact dynamic characteristics. Regarding an excavator, rotational inertia for swing motion may change significantly according to working posture and digging conditions. Hence, rotational inertia estimation by predicting swing motion is critical for enhancing working safety and automation. Swing velocity and damping coefficient were used for rotational inertia estimation in this study. Updating rules are proposed for enhancing convergence performance by using the damping coefficient and forgetting factors. The proposed estimation algorithm uses three forgetting factors to estimate time-varying rotational inertia, damping coefficient, and torque with different variation rates. Rotational inertia in a typical working scenario was considered for reasonable performance evaluation. Three simulations were conducted by considering several digging conditions. Presented estimation results reveal the proposed estimation scheme is effective for estimating varying rotational inertia of the excavator.

The Rotational Motion Stabilization Using Simple Estimation of the Rotation Center and Angle

  • Seok, Ho-Dong;Kim, Do-Jong;Lyou, Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.231-236
    • /
    • 2003
  • This paper presents a simple approach on the rotational motion estimation and correction for the roll stabilization of the sight system. The algorithm first computes the rotational center from the selected local velocity vectors of related pixels by least square methods. And then, rotational angle is found from the special subset of the motion vector. Finally, motion correction is performed by the nearest neighbor interpolation technique. In order to show the performance of the algorithm, the evaluation for the synthetic and real image was performed. The test results show good performance compared with previous approach.

  • PDF

A Stabilization Method for Rotated and Translated Images (회전 및 병진 흔들림 영상의 안정화 기법)

  • Seok Ho-Dong;Lyou Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.8
    • /
    • pp.810-817
    • /
    • 2006
  • This paper presents a rotational motion estimation and correction technique for digital image stabilization. An equivalent rotation model is derived so as to accommodate a combined rotational and the translational motion. Thanks to this simplification, the suggested estimation algorithm can directly find the rotational center using geometric characteristic of local motion vectors instead of using searching method. And we also present recursive version of frame to reference algorithm(FRA) for the real time implementation. The proposed DIS system does not require time consuming parameter searching process, while showing comparatively good performance compared with the previous ones. To show the effectiveness of the DIS scheme, the algorithm has been implemented on the DSP based hardware system and experimental results are also discussed.

Digital Image Stabilization in the 2-axes Stabilization System using Zero-crossing of the Rotational Motion (2축 안정화 시스템에서 zero-crossing을 이용한 영상 안정화)

  • Kim, Dong-No;Kim, Gi-Hong;Jeong, Tae-Yeon;Gwon, Yeong-Do;Kim, Deok-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.396-399
    • /
    • 2003
  • This paper proposes a simple digital image stabilization(DIS) algorithm for roll motion, which has not been compensated in the 2-axes mechanical stabilization system, using aero-crossing of the rotational motion vectors. The 2-axes stabilization system cannot stabilize rolled images, which causes the deteriorated performance of the object detection and recognition. In this paper, we propose the rotational motion stabilization algorithm which estimates and compensates global motion in terms of rotational center and rotational angle. Both the synthetic images with undesirable rotational disturbance and the real images from 2-axes stabilization system are used to evaluate the proposed algorithm. The results show that our proposed algorithm suppresses the undesirable rotational disturbance effectively.

  • PDF

Estimation of Rotational Center and Angle for Image Stabilization (영상 안정화를 위한 회전중심 및 각도 추정기법)

  • Seok, Ho-Dong;Yoo, Jun;Kim, Do-Jong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.7
    • /
    • pp.611-617
    • /
    • 2004
  • This paper presents a simple method of rotational motion estimation and correction for roll axis stabilization of an image. The scheme first computes the rotation center by taking least squares of selected local velocity vectors, and the rotational angle is found from special subset of motion vectors. Roll motion correction is then performed by the nearest neighbor interpolation technique. To show the effectiveness of our approach, the synthetic and real images are evaluated, resulting in better performance than the previous ones.

Identification and Robust $H_\infty$ Control of the Rotational/Translational Actuator System

  • Tavakoli Mahdi;Taghirad Hamid D.;Abrishamchian Mehdi
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.3
    • /
    • pp.387-396
    • /
    • 2005
  • The Rotational/Translational Actuator (RTAC) benchmark problem considers a fourth-order dynamical system involving the nonlinear interaction of a translational oscillator and an eccentric rotational proof mass. This problem has been posed to investigate the utility of a rotational actuator for stabilizing translational motion. In order to experimentally implement any of the model-based controllers proposed in the literature, the values of model parameters are required which are generally difficult to determine rigorously. In this paper, an approach to the least-squares estimation of the parameters of a system is formulated and practically applied to the RTAC system. On the other hand, this paper shows how to model a nonlinear system as a linear uncertain system via nonparametric system identification, in order to provide the information required for linear robust $H_\infty$ control design. This method is also applied to the RTAC system, which demonstrates severe nonlinearities, due to the coupling from the rotational motion to the translational motion. Experimental results confirm that this approach can effectively condense the whole nonlinearities, uncertainties, and disturbances within the system into a favorable perturbation block.

3-D Facial Motion Estimation using Extended Kalman Filter (확장 칼만 필터를 이용한 얼굴의 3차원 움직임량 추정)

  • 한승철;박강령김재희
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.883-886
    • /
    • 1998
  • In order to detect the user's gaze position on a monitor by computer vision, the accurate estimations of 3D positions and 3D motion of facial features are required. In this paper, we apply a EKF(Extended Kalman Filter) to estimate 3D motion estimates and assumes that its motion is "smooth" in the sense of being represented as constant velocity translational and rotational model. Rotational motion is defined about the orgin of an face-centered coordinate system, while translational motion is defined about that of a camera centered coordinate system. For the experiments, we use the 3D facial motion data generated by computer simulation. Experiment results show that the simulation data andthe estimation results of EKF are similar.e similar.

  • PDF

Estimation of Sensitivity Axis Offset of an Accelerometer for Accurate Measurement of the 6 DOF Human Head Motion (인체 머리부 6 자유도 운동 측정의 신뢰성 향상을 위한 가속도계 감도축의 옵셋(offset) 추정)

  • Lee, Jeung-Hoon;Kim, Kwang-Joon;Jang, Han-Kee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.9
    • /
    • pp.905-912
    • /
    • 2008
  • Notion sickness is well known to be caused by long time exposure to the very low frequency motion in the multiple axes of human body Since the vestibular system for the perception of low frequency motion is located in the head, accurate measurement of 6 degree of freedom head motion is of great importance. In this study, the measurement system consisting of a safety helmet and 9 translational accelerometers was constructed for the estimation of 3 translational and 3 rotational motions of human head. Since estimation errors of 3 rotational components can be significantly magnified even by small offset of the sensitivity axis from the geometric center of an accelerometer, accurate measurement of sensitivity axis must be preceded. The method for accurate estimation of the offset was proposed, and the effect of offset on the estimation of angular acceleration was investigated.

Estimation of Rotational Motion Accuracy for Rotary Units (회전 유니트의 회전정밀도 예측 기술)

  • Hwang, Jooho;Shim, Jongyoup;Park, Chun-Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.2
    • /
    • pp.127-133
    • /
    • 2015
  • The error motion of a machine tool spindle directly affects the surface errors of machined parts. Those are usually due to the imperfectness of bearings, stiffness of spindle, assembly errors, external force or unbalance of rotors. The error motions of the spindle have been needed to be decreased to desired goal of spindle's performance. The level of error motion is needed to be estimated during the design and assembly process of the spindle. In this paper, the estimation method for the five degree of freedom (5 D.O.F) error motions for rotary units such as a spindle and rotary table are suggested. To estimate the error motions of the rotary unit, waviness of bearings and external force model were used as input data. The estimation model considers geometric relationship and force equilibrium of the five degree of the freedom motions.