• Title/Summary/Keyword: Rotational loss

Search Result 133, Processing Time 0.034 seconds

Design of a Mechanical Joint for Zero Moment Crane By Kriging (크리깅을 이용한 제로 모멘트 크레인에 적용되는 조인트의 설계)

  • Kim, Jae-Wook;Jangn, In-Gwun;Kwak, Byung-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.597-604
    • /
    • 2010
  • This study focuses on the design of a mechanical joint for a zero moment crane (ZMC), which is a specialized loading/unloading system used in a mobile harbor (MH). The mechanical joint is based on the concept of zero moment point (ZMP), and it plays an important role in stabilizing a ZMC. For effective stabilization, it is necessary to ensure that the mechanical joint is robust to a wide variety of loads; further, the joint must allow the structures connected to it to perform rotational motion with two degrees of freedom By adopting a traditional design process, we designed a new mechanical joint; in this design, a universal joint is coupled with a spherical joint, and then, deformable rolling elements are incorporated. The rolling elements facilitate load distribution and help in decreasing power loss during loading/unloading. Because of the complexity of the proposed system, Kriging-based approximate optimization method is used for enhancing the optimization efficiency. In order to validate the design of the proposed mechanical joint, a structural analysis is performed, and a small-scale prototype is built.

Performance Review of a Cycloid Speed Reducer for Ship Transport Vehicles using FEM (유한요소해석을 이용한 선박수송차량용 사이클로이드 감속기의 성능 검토)

  • Kang, Hyung-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.5
    • /
    • pp.2061-2066
    • /
    • 2011
  • A cycloid speed reducer is one of the rotational speed regulation devices of the machinery. A cycloid speed reducer has an advantage of transmitting high torque, but is known to be unsuitable for high speed rotation. However, it is almost impossible in an analytical method to find a use limit speed when installing such a speed reducer in a 200ton loading transporter. In this research the cycloid reducer was simulated to get its performance depending on friction energy loss in time domain by using by LS-DYNA. The maximum torque of the cycloid speed reducer is 3.5ton-m, so the comparison of analysis results between a case of 60rpm rotation and a case of 162rpm rotation with such a torque showed the following results. In the case of 60rpm rotation, the maximum stress appearing in the RV gear and the pin gear was 463MPa and 507MPa. Lost power due to friction was 50kW; In the case of 162rpm rotation, the maximum stress appearing in the RV gear and the pin gear was 550MPa and 538MPa. Lost power due to friction was 175kW, which was shown to be almost impossible to use.

Modified Mau Osteotomy for the Treatment of Severe Hallux Valgus (중증 무지외반증에서 변형 Mau 절골술을 이용한 치료)

  • Bae, Su-Young;Kim, Young-Eun
    • Journal of Korean Foot and Ankle Society
    • /
    • v.8 no.2
    • /
    • pp.117-120
    • /
    • 2004
  • Purpose: The purpose of this study was to evaluate the effect and short-term results of the modified Mau osteotomy designed by the author. Materials and Methods: Seventeen feet treated with newly designed osteotomy from 2003 to 2004 were included. We performed metatarsal osteotomy and distal soft tissue procedure on 17 feet (12 patients) and additional Akin osteotomy on 6 feet (4 patients). An oblique osteotomy was made from the neck in the dorsum, aiming proximal to the base of the first metatarsal with vertical short arm on the base. We performed long arm of osteotomy parellel to the acrylic plate which was supposed as ground plane. Preoperative radiographs and follow up radiographs at three month were used for radiologic evaluation. Results: Mean hallux valgus angle was $43.6^{\circ}$ and mean intermetatarsal angle was $20.4^{\circ}$ on preoperative weight bearing radiograph. Mean amount of correction of the hallux valgus angle was $37.5^{\circ}$ and intermetatarsal angle was $14.2^{\circ}$ at three months after operation. There was no fixation loss or malunion, and the clinical result was subjectively exellent. Conclusion: More proximal rotational axis can achieve sufficient intermetatarsal angle correction, and vertical arm can provide more stable contact. So this newly modified Mau osteotomy was considered as a good alternative procedure in the treatment of severe hallux valgus.

  • PDF

The Value and Limitation of the Modified Mau Osteotomy (30 Cases Follow Up Report) (변형 마우 절골 술기의 유용성과 한계점 (30예 추시 보고))

  • Bae, Su-Young;Kim, Byoung-Min;Nam, Hee-Tae;Choi, Hee-Joon
    • Journal of Korean Foot and Ankle Society
    • /
    • v.12 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • Purpose: To evaluate the value and limitation of modified Mau osteotomy through the review of 30 feet treated by this procedure. Materials and Methods: We retrospectively analyzed 30 cases treated with modified Mau osteotomy since 2002. The mean duration of follow-up was 10 months. We reviewed medical records to describe each case and select several clinical factors which related with surgical procedure and could influence on final results. We measured radiographic parameters such as hallux valgus angle (HVA), intermetatarsal angle (IMA), distal metatarsal articular angle (DMAA), sesamoid position and also assessed clinical outcomes by AOFAS score and satisfaction degrees. Results: The mean preoperative HVA and IMA were $40.4^{\circ}$, $17.4^{\circ}$ and the mean amounts of correction were $31.2^{\circ}$ and $11.5^{\circ}$. Amounts of delayed loss of correction were 16.8% in HVA and 19.2% in IMA. Initial HVA, rotational angle and translation distance of the distal fragment, stability of fixation, first ray instability were revealed as significant factors for the final result from this procedure. DMAA was increased by rotation of the distal fragment and decreased by adding translation on the rotation. Conclusion: Modified Mau osteotomy is an effective procedure to get enough correction. But, it is important to try to avoid excessive rotation of the distal fragment because it may worse joint congruity. It may be worthwhile to pay close attention to the direction of saw and stability of fixation.

  • PDF

Tuned liquid column dampers with adaptive tuning capacity for structural vibration control

  • Shum, K.M.;Xu, Y.L.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.5
    • /
    • pp.543-558
    • /
    • 2005
  • The natural frequencies of a long span bridge vary during its construction and it is thus difficult to apply traditional tuned liquid column dampers (TLCD) with a fixed configuration to reduce bridge vibration. The restriction of TLCD imposed by frequency tuning requirement also make it difficult to be applied to structure with either very low or high natural frequency. A semi-active tuned liquid column damper (SATLCD), whose natural frequency can be altered by active control of liquid column pressure, is studied in this paper. The principle of SATLCD with adaptive tuning capacity is first introduced. The analytical models are then developed for lateral vibration of a structure with SATLCD and torsional vibration of a structure with SATLCD, respectively, under either harmonic or white noise excitation. The non-linear damping property of SATLCD is linearized by an equivalent linearization technique. Extensive parametric studies are finally carried out in the frequency domain to find the beneficial parameters by which the maximum vibration reduction can be achieved. The key parameters investigated include the distance from the centre line of SATLCD to the rotational axis of a structure, the ratio of horizontal length to the total length of liquid column, head loss coefficient, and frequency offset ratio. The investigations demonstrate that SATLCD can provide a greater flexibility for its application in practice and achieve a high degree of vibration reduction. The sensitivity of SATLCD to the frequency offset between the damper and structure can be improved by adapting its frequency precisely to the measured structural frequency.

Change in fibrinogen levels and severe postoperative bleeding in cardiac surgery

  • Kim, Eun-Jung;Kim, Joo-Yun;Kim, Hee Young;Hwang, Boo-Young;Cho, Ah-Reum;Jung, Young-Hoon;Baek, Seung-Hoon;Hong, Jeong-Min
    • International Journal of Oral Biology
    • /
    • v.45 no.2
    • /
    • pp.51-57
    • /
    • 2020
  • Thromboelastography or rotational thromboelastometry, is being increasingly utilized in cardiac surgery of late. However, it is an indirect test and is not available in all centers. Low fibrinogen levels before and after cardiopulmonary bypass (CPB) have been described to be associated with postoperative bleeding in cardiac surgery. This study explored the usefulness of reduction ratio of the fibrinogen levels before CPB (preCPB) and after CPB (postCPB) in predicting postoperative hemorrhage. A retrospective, observational study of adult patients who underwent cardiac surgery with CPB between February 2014 and January 2016 was conducted, which included a total of 264 patients. The fibrinogen levels were measured twice, preCPB and postCPB, and the fibrinogen reduction ratio was acquired [(preCPB - postCPB)/preCPB]. Postoperative blood loss, which was defined as the blood collected from the chest drain for 12 hours following arrival at the intensive care unit, was considered severe if it was more than 1,000 mL. A multivariate analysis showed that fibrinogen reduction ratio, sex, and postCPB platelet count were significantly associated with severe postoperative bleeding. However, the pre- and postCPB fibrinogen levels were not significantly associated with severe bleeding. Furthermore, a fibrinogen reduction ratio of > 41.3% was independently associated with postoperative severe bleeding, with an odds ratio of 3.472 (1.483-8.162). These results suggest that the reduction ratio of pre- and postCPB fibrinogen levels may be utilized in predicting postoperative bleeding.

Viscoelastic behavior of aqueous surfactant micellar solutions

  • Toshiyuki Shikata;Mamoru Shiokawa;Shyuji Itatani;Imai, Shin-ichiro
    • Korea-Australia Rheology Journal
    • /
    • v.14 no.3
    • /
    • pp.129-138
    • /
    • 2002
  • A cationic surfactant, cetyltrimethylammonium $\rho$-toluenesufonate (CTA$\rho$TS), forms long threadlike micelles in aqueous solution. The threadlike micelles make concentrated entanglement networks, so that the solution shows pronounced viscoelastic behavior as concentrated polymer systems do. However, a mechanism for a process responsible for the longest relaxation time of the threadlike micellar system is different from that of semi-dilute to concentrated polymer systems. The threadlike micellar system exhibits unique viscoelasticity described by a Maxwell model. The longest relaxation time of the threadlike micellar system is not a function of the concentration of CTA$\rho$TS, but changes with that of $\rho$-toluenesufonate ($\rho$$TS^{-}$) ions in the bulk aqueous phase supplied by adding sodium $\rho$-toluenesulfonate (NapTS). The rates of molecular motions in the threadlike micelles are not influenced by the concentration of $\rho$$TS^{-}$ anions, therefore, molecular motions in the threadlike micelles (micro-dynamics) are independent of the longest relaxation mechanism (macro-dynamics). A nonionic surfactant, oleyldimethylamineoxide (ODAO), forms long threadlike micelles in aqueous solution without any additives. The aqueous threadlike micellar system of ODAO also shows Maxwell type viscoelastic behavior. However, the relaxation mechanism for the longest relaxation process in the system should be different from that in the threadlike micellar systems of CTA$\rho$TS, since the system of ODAO does not contain additive anions. Because increase in the average degree of protonation of head groups of ODAO molecules in micelles due to adding hydrogen bromide causes the relaxation time remarkably longer, changes in micro-structure and micro-dynamics in the threadlike micelle are closely related to macro-dynamics in contrast with the threadlike micellar system of CTA$\rho$TS.

Emission Plasma Spectroscopy of High-pressure Microdischarges

  • Lee, Byeong-Jun;Ju, Yeong-Do;Kim, Seung-Hwan;Ha, Tae-Gyun;Gong, Hyeong-Seop;Park, Yong-Jeong;Park, Jong-Do;Nam, Sang-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.253.2-253.2
    • /
    • 2014
  • Micro hollow cathode discharges (MHCDs) are high-pressure, non-equilibrium discharges. Those MHCDs are useful to produce an excimer radiation. A major advantage of excimer sources is their high internal efficiency which may reach values up to 40% when operated under optimum conditions. To produce strong excimer radiation, the optimisation of the discharge conditions however needs a detailed knowledge of the properties of the discharge plasma itself. The electron density and temperature influence the excitation as well as plasma chemistry reactions and the gas temperature plays a major role as a significant energy loss process limiting efficiency of excimer radiation. Most of the recent spectroscopic investigations are focusing on the ultraviolet or vacuum ultraviolet range for direct detection of the excimer. In our experiments we have concentrated on investigating the micro hollow cathodes from the near UV to the near infrared (300~850 nm) to measure the basic plasma parameters using standard plasma diagnostic techniques such as stark broadening for electron density and the relative line intensity method for electron temperature. Finally, the neutral gas temperature was measured by means of the vibrational rotational structures of the second positive system of nitrogen.

  • PDF

Development of a Harvester for Crawled Spinach (포복형 시금치 수확기 개발)

  • Jun H. J.;Kim S. H.;Choi Y.;Kim Y. K.;Hong J. T.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.4 s.111
    • /
    • pp.210-219
    • /
    • 2005
  • This study was conducted to solve the problem of crawled spinach harvesting that had been mainly done by manpower on the outdoor fields during the winter season. Moreover, there are not enough workers available for farming at most of rural areas in Korea because farming is getting hard and the number of old-aged workers is increasing. In order to find appropriate methods of digging, picking and collecting of spinach, the tests were examined outdoors. A prototype was designed based on the results of the tests and then fabricated for digging, picking-up and then collecting in continuous operation for harvesting spinach planted in the outdoor fields. In the field test with the prototype, the vibration intensity transmitted to the driver by vibrating blade was low while the vibrating blade reduced digging power by $46\%$ compared to that of the fixed blade. The spinach loss was found to be as low as $0.7\%$ in the condition of digging depth of 40 mm, cam rotational velocity of 748 rpm, and blade amplitude of 16.5 m. The working performance of the prototype spinach harvester was found to be 3.8 hour/10a resulting in $96\%$ of labor saving and $85\%$ of operating cost compared to the conventional manual harvesting.

Study on the Application of the Electric Drive System of Fuel Pump for Diesel Engine of Commercial Vehicle using HILS (HILS기반 상용차 디젤엔진용 연료펌프의 전기구동 시스템 적용에 관한 연구)

  • Ko, Youngjin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.166-174
    • /
    • 2014
  • Fuel injection pressure has steadily increased in diesel engines for the purpose of improving fuel efficiency and cleaning exhaust gas, but it has now reached a point, where the cost for higher pressure does not warrant additional gains. Common rail systems on modern diesel engines have fuel pumps that are mechanically driven by crankshaft. The pumps actually house two pumping module inside: a low pressure pump component and a high pressure pump component. Part of the fuel compressed by the low pressure component returns to the tank in the process of maintaining the pressure in the common rail. Since the returning fuel represents pumping loss, fuel economy improves if the returned fuel can be eliminated by using a properly controled electrical fuel pump. As the first step in developing an electrical fuel pump the fuel supply system on a 6 liter diesel engine was modeled with AMESim to analyze the workload and the fuel feed rate of the injection pump, and the results served as basis for selecting a suitable servo motor and a reducer to drive the pump. A motor controller was built using a DSP and a program which controls the common rail pressure using a proportional control method based on the target fuel pressure information from the engine ECU. A test rig to evaluate performance of the fuel pump is implemented and used to show that the newly developed electrically driven fuel pump can satisfy the fuel flow demand of the engine under various operating conditions when the rotational speed of the pump is adequately controlled.