• Title/Summary/Keyword: Rotational direction

Search Result 322, Processing Time 0.029 seconds

Experimental Analysis on Yield Strength of Pipe Connectors and Joints for Pipe Framed Greenhouses (파이프 골조 온실의 조립 연결구 내력 시험)

  • 남상운
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.6
    • /
    • pp.113-119
    • /
    • 2001
  • Experiments on the yield strength of pipe connectors made of metal wire, joint pins, pole pipes, multi span insertion joints, and T-clamp joints used in pipe houses were conducted. The strength of connections of a pipe connector made of metal wire was adequate but it had a big difference according to loading direction. Therefore as it is installed, its direction should be taken into consideration. The collapse load of pipes connected with a joint pin was lower than that of single pipes. In the part of frame member at which the great bending moment occurs, the use of joint pin should be avoided. Also experimental results showed that pole pipes for use in a part of frame buried under the ground were safe, and the strength of multi span insertion joints should be increased. The resistant moment of T-clamp was about 13.7% of a single pipe. In case that the external forces acting on left and right rafter are different. a unsymmetrical rotational force is produced at the multi span joint. If it is expected that the actual bending moment on the multi span joint is larger than resistant moment of T-clamp, a reinforcement to safely resist the rotational force is required.

  • PDF

RESONANT MOTION OF A PARTICLE ON AN AXISYMMETRIC CONTAINER SUBJECT TO HORIZONTAL EXCITATION

  • Suh, Yong-Kweon
    • Journal of Theoretical and Applied Mechanics
    • /
    • v.2 no.1
    • /
    • pp.51-70
    • /
    • 1996
  • This study is generalization of the study of Miles[Physica 11D, 1984, pp.309-323]on the resonant motion of a spherical pendulum, which is equivalent to a particle on a spherical container subject to a linear, horizontal excitation. This study covers an arbitrary shape of container and a more general excitation (horizontal but elliptic motion). The averaging method is applied to reduce the governing equations to an autonomous system with cubic nonlinear terms, under the assumption of small amplitude of the container motion. It is shown that both the container shape and the excitation pattern affect the particle dynamics. Under the linear excitation, the anharmonic motion of the particle is possible only for a certain finite range of the parameter a controling the container shape. Stability of the particle's harmonic motion is also influenced by the excitation pattern; as the excitation trajectory becomes closer to a circle, the particle's motion has a stronger tendency to become stable and to follow the rotational direction of the excitation. Under a circular excitation, the motion is always stable and circular with the same rotational direction as the excitation. Analogy between the present model and that of the surface wave inside a circular is studied quantitatively.

Compliance Analysis for Effective handling of Peg-In/Out-Hole Tasks Using Robot Hands (로봇 손을 이용한 팩의 조립 및 분해 작업을 효율적으로 수행하기 위한 컴플라이언스 해석)

  • Kim, Byoung-Ho;Yi, Byung-Ju;Suh, Il-Hong;Oh, Sang-Rok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.9
    • /
    • pp.777-785
    • /
    • 2000
  • This paper provides a guideline for the determination of compliance characteristics and the proper location of the compliance center in typical peg-in-hole and peg-out-hole tasks using hands. We first observe the fact that some of coupling stiffness elements cannot be planned arbitrarily. The given peg-in/out-hole tasks are classified into two contact styles. Then, we analyze concluded of the operational siffness matrix, which achieve the give peg-in/out-hole tasks effectively for each case. It is concluded that the location of the compliance center on the peg and the coupling stiffness element existing between the translational and the rotational direction play ompliance on the peg and the coupling siffness element existing between the translational and the rotational direction play important roles for successful peg-in/out-hole tasks. The analytic results verified through simulations.

  • PDF

Verification of Micro-vibration Isolation Performance by using Low Rotational Stiffness Isolator under Elevation Direction Operation of the X-band Antenna (저 회전강성 진동 절연기에 의한 X-밴드 안테나의 고각방향 미소진동 절연 효과 검증)

  • Jeon, Su-Hyeon;Lee, Jae-Gyeong;Jeong, Sae-Han-Sol;Lee, Myeong-Jae;Oh, Hyun-Ung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.4
    • /
    • pp.238-246
    • /
    • 2015
  • A stepping motor is widely used to operate the elevation and azimuth stage of the X-band antenna with 2-axis gimbal system for effective image data transmission from a satellite to a ground station. However, such stepping motor also generates an undesirable micro-vibration which is one of the main disturbance sources affecting image quality of the high-resolution observation satellite. In order to improve the image quality, the micro-vibration isolation of the X-band antenna system is essential. In this study, the low rotational stiffness isolator has been proposed to reduce the micro-vibration disturbance induced by elevation direction operation of the X-band antenna. In addition, its structural safety was confirmed by the structure analysis based on the derived torque budget. The effectiveness of the design was also verified through the micro-vibration measurement test.

Numerical Study on Uniform-Shear new over a Rotating Circular Cylinder (회전하는 원형실린더를 지나는 균일전단 유동에 관한 수치연구)

  • Kang Sang mo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.5 s.236
    • /
    • pp.577-589
    • /
    • 2005
  • The present study has numerically investigated two-dimensional laminar flow over a steadily rotating circular cylinder with a uniform planar shear, where the free-stream velocity varies linearly across the cylinder. It aims to find the combined effect of rotation and shear on the flow. Numerical simulations using the immersed boundary method are performed for the ranges of $-2.5{\le}\alpha{\le}2.5$ and $0{\le}K{\le}0.2$ at a fixed Reynolds number of Re=100, where a and K are respectively the dimensionless rotational speed and velocity gradient. Results show that the positive shear, with the upper side having the higher free-stream velocity than the lower one, favors the effect of the counter-clockwise rotation $(\alpha<0)$ but countervails that of the clockwise rotation $(\alpha>0)$. Accordingly, the absolute critical rotational speed, below which vortex shedding occurs, decreases with increasing K for $(\alpha>0)$, but increases for $\alpha>0$. The vortex shedding frequency increases with increasing \alpha (including the negative) and the variation becomes steeper with increasing K. The mean lift slightly decreases with increasing K regardless of the rotational direction. However, the mean drag and the amplitudes of the lift- and drag-fluctuations strongly depend on the direction. They all decrease with increasing K for $\alpha>0$, but increase for $\alpha<0$. Flow statistics as well as instantaneous flow folds are presented to identify the characteristics of the flow and then to understand the underlying mechanism.

A Study on Effective Output Control Technique for Rotational Transmission Beam Drive of Sonar Transmitter (소나 송신기의 회전 송신빔 구동을 위한 효율적인 출력 제어 기법 연구)

  • Lee, Byung-Hwa
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.5
    • /
    • pp.280-287
    • /
    • 2012
  • This paper presents a study on the experimental analysis of the impedance characteristics according to the rotational direction of the transmission beam of a cylindrical sensor array. Besides, this suggests a real time control technique of the transmitter output for the effective maximum power transmission, in order to drive efficiently the rotational transmission beam of the active sonar transmitter. The output characteristics of the transmitter and the real-time impedance variations of the sensor array are analyzed under the overload conditions. They are caused by electric and acoustic boundary conditions when the rotational transmission beam is operated. From these results, a new output control method of the transmitter is proposed to protect the transmitter and its loads. It can maximize the output power without the transmission pause even if the transient phenomena occur. The proposed technique is verified from the experiment.

Proposal of Rotating Stability Assessment Formula for an Interlocking Caisson Breakwater Subjected to Wave Forces (파랑하중에 대한 인터로킹 케이슨 방파제의 회전 안정성 평가식 제안)

  • Park, Woo-Sun;Won, Deokhee;Seo, Jihye;Lee, Byeong Wook
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.1
    • /
    • pp.11-16
    • /
    • 2020
  • The rotational stability of an interlocking caisson breakwater was studied. Using the analytical solution for the linear wave incident to the infinite breakwater, the phase difference effect of wave pressures in the direction of the breakwater baseline is considered, and Goda's wave pressure formula in the design code is adopted to consider the nonlinearity of the design wave. The rotational safety factor of the breakwater was defined as the ratio of the rotational frictional resistance moment due to caisson's own weight and the acting rotational moment due to the horizontal and vertical wave forces. An analytical solution for the rotational center point location and the minimum safety factor is presented. Stability assessment formula were proposed to be applicable to all design wave conditions used in current port and harbor structure design such as regular waves, irregular waves and multi-directional irregular waves.

The Kinematical Analysis of Li Xiaopeng Motion in Horse Vaulting (도마운동 Li Xiaopeng 동작의 운동학적 분석)

  • Park, Jong-Hoon;Yoon, Sang-Moon
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.3
    • /
    • pp.81-98
    • /
    • 2003
  • The purpose of this study is to closely examine kinematic characteristics by jump phase of Li Xiaopeng motion in horse vaulting and provide the training data. In doing so, as a result of analyzing kinematic variables through 3-dimensional cinematographic using the high-speed video camera to Li Xiaopeng motion first performed at the men's vault competition at the 14th Busan Asian Games, the following conclusion was obtained. 1. It was indicated that at the post-flight, the increase of flight time and height and twisting rotational velocity has a decisive effect on the increase of twist displacement. And Li Xiaopeng motion showed longer flight time and higher flight height than Ropez motion with the same twist displacement of entire movement. Also the rotational displacement of the trunk at peak of COG was much short of $360^{\circ}$(one rotation) but twist displacement showed $606^{\circ}$. Likewise, Li Xiaopeng motion was indicated to concentrate on twist movement in the early flight. 2. It was indicated that at the landing, Li Xiaopeng motion gets the hip to move back, the trunk to stand up and the horizontal velocity of COG to slow down. This is thought to be the performance of sufficient landing, resulting from large security of rotational displacement of airborne and twist displacement. 3. It was indicated that at the board contact, Li Xiaopeng motion made a rapid rotation uprighting the trunk to recover slowing velocity caused by jumping with the horse in the back, and has already twisted the trunk nearly close to $40^{\circ}$ at board contact. Under the premise that elasticity is generated without the change of the feet contacting the board, it will give an aid to the rotation and twist of pre-flight. Thus, in the round-oH phase, the tap of waist according to the fraction and extension of hip joint and arm push is thought to be very important. 4. It was indicated that at the pre-flight, Li Xiaopeng motion showed bigger movement than the techniques of precedented studies rushing to the horse, and overcomes the concern of relatively low power of jump through the rapid rotation of the trunk. Li Xiaopeng motion secured much twist distance, increased rotational distance with the trunk bent forward, resulting in the effect of rushing to the horse. 5. At horse contact, Li Xiaopeng motion makes a short-time contact, and maintains horse take-off angle close to vertical, contributing to the increase of post-flight time and height. This is thought to be resulted from rapid move toward movement direction along with the rotational velocity of trunk rapidly earned prior to horse contact, and little shave of rotation axis according to twist motion because of effective twist in the same direction.

Difference in Rotation Pattern of Toric Soft Contact Lenses with Different Axis Stabilization Design (축 안정화 디자인이 상이한 토릭소프트콘택트렌즈의 회전 양상 차이)

  • Park, So Hyun;Kim, Dong Yeon;Choi, Joo Hee;Byun, Hyun Young;Kim, So Ra;Park, Mijung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.20 no.2
    • /
    • pp.133-140
    • /
    • 2015
  • Purpose: It was investigated whether two different stabilization designs of toric contact lenses changed the rotational axis and degree of toric lenses according to body posture and gaze direction in the present study. Methods: Toric soft contact lenses with Lo-Torque$^{TM}$ design and ASD design (accelerated stabilized design) were fitted on 52 eyes aged in 20s-30s. Then, rotational degree was measured at the five gaze directions including front gaze and the lying position. Results: When gazing the front and vertical directions in the upright posture, lens was much rotated to nasal side for the Lo-Torque$^{TM}$ design and temporal side for the ASD design. When gazing horizontal direction, both design lenses were rotated against to the gaze direction. Rotation degree was the smallest at superior direction gaze and the largest at nasal gaze. In case of the rotation degree less than $5^{\circ}$, Lo-Torque$^{TM}$ design was more frequent when gazing front and vertical directions, and ASD design was more frequent when gazing horizontal direction. In addition, the lens with Lo-Torque$^{TM}$ design was lesser rotation degree than with ASD design immediately after lying. On the other hand, the lens with ASD design was lesser rotation degree than with Lo-Torque$^{TM}$ design 1 minute later after lying. Conclusions: This study confirmed that axis rotation of the lens induced by gaze direction and posture was different according to axis stabilization design during wearing toric soft contact lens.

Positional and morphologic changes of the temporomandibular joint disc using magnetic resonance imaging

  • Ahn Hyoun-Suk;Cho Su-Beom;Koh Kwang-Joon
    • Imaging Science in Dentistry
    • /
    • v.31 no.4
    • /
    • pp.235-240
    • /
    • 2001
  • Purpose: To evaluate displacement and morphologic changes of the temporomandibular joint (TMJ) disc in patient with internal derangement using magnetic resonance imaging (MRI). Materials and Methods: One hundred and forty five MR images of TMJs in 73 patients were evaluated. Positional and morphologic changes of the TMJ discs were assessed. Lateral or medial disc displacement was also evaluated on coronal images. Results: Among 63 discs with anterior disc displacement, 37 discs were assessed as a biconcave disc and 21 as a deformed disc. Rotational disc displacement was observed in 35 discs. Anteromedial disc displacement was observed in 29 discs, and anterolateral direction in 6 discs. Among 35 rotational displacement, 5 biconcave discs and 21 deformed discs were observed. Conclusion : Rotational and sideways displacement of TMJ discs were found to be common and an important aspect of internal derangement. This study also suggests that sagittal and coronal images of the TMJ have complementary abilities for an assessment of joint abnormality.

  • PDF