• 제목/요약/키워드: Rotational diffusion

검색결과 42건 처리시간 0.246초

Molecular dynamics study of ionic diffusion and the FLiNaK salt melt structure

  • A.Y. Galashev
    • Nuclear Engineering and Technology
    • /
    • 제55권4호
    • /
    • pp.1324-1331
    • /
    • 2023
  • In the present work, we carried out a molecular dynamics study of the kinetic properties of the FLiNaK molten salt, as well as a detailed study of the structure of this salt melt. The high value of the self-diffusion coefficient of fluorine ions is due to the large number of Coulomb repulsions between the most numerous negative ions. The calculated values of shear viscosity are in good agreement with the experimental data, as well as with the reference data obtained on the basis of finding the most reliable data. The total and partial functions of the radial distribution are calculated. According to the statistical analysis, fluorine ions have the greatest numerical diversity in the environment of similar ions, and sodium ions with the lowest representation in FLiNaK, have the least such diversity. For the subsystem of fluorine ions, the rotational symmetry of the fifth order is the most pronounced. Some of the fluorine ions form linear chains consisting of three atoms, which are not formed for positive ions. The results of the work give an understanding of the behavior molten FLiNaK under operating conditions in a molten salt reactor and will find application in future studies of this molten salt.

Structure and Dynamics of Dilute Two-Dimensional Ring Polymer Solutions

  • Oh, Young-Hoon;Cho, Hyun-Woo;Kim, Jeong-Min;Park, Chang-Hyun;Sung, Bong-June
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권3호
    • /
    • pp.975-979
    • /
    • 2012
  • Structure and Dynamics of dilute two-dimensional (2D) ring polymer solutions are investigated by using discontinuous molecular dynamics simulations. A ring polymer and solvent molecules are modeled as a tangent-hard disc chain and hard discs, respectively. Some of solvent molecules are confined inside the 2D ring polymer unlike in 2D linear polymer solutions or three-dimensional polymer solutions. The structure and the dynamics of the 2D ring polymers change significantly with the number ($N_{in}$) of such solvent molecules inside the 2D ring polymers. The mean-squared radius of gyration ($R^2$) increases with $N_{in}$ and scales as $R{\sim}N^{\nu}$ with the scaling exponent $\nu$ that depends on $N_{in}$. When $N_{in}$ is large enough, ${\nu}{\approx}1$, which is consistent with experiments. Meanwhile, for a small $N_{in}{\approx}0.66$ and the 2D ring polymers show unexpected structure. The diffusion coefficient (D) and the rotational relaxation time ($\tau_{rot}$) are also sensitive to $N_{in}$: D decreases and $\tau$ increases sharply with $N_{in}$. D of 2D ring polymers shows a strong size-dependency, i.e., D ~ ln(L), where L is the simulation cell dimension. But the rotational diffusion and its relaxation time ($\tau_{rot}$) are not-size dependent. More interestingly, the scaling behavior of $\tau_{rot}$ also changes with $N_{in}$; for a large $N_{in}$ $\tau_{rot}{\sim}N^{2.46}$ but for a small $N_{in}$ $\tau_{rot}{\sim}N^{1.43}$.

Membrane-Ordering Effects of Barbiturates on Pure Phospholipid Model Membranes

  • Knag, Jung-Sook;Chung, Young-Za;Cho, Goon-Jae;Byun, Won-Tan;Yun, Il
    • Archives of Pharmacal Research
    • /
    • 제15권3호
    • /
    • pp.196-203
    • /
    • 1992
  • Intramolecular excimer formation of 1, 3-di(1-pyrenyl)propane (Py-3-Py) and fluorescence polarization of 1, 6-diphenyl-1, 3, 5-hexatriene (DPH) were used to investigate the effects of barbiturates on the fluidity of model membranes of phosphatidycholine (SPMVPC), phosphatidylserine (SPMVPS), and phosphatidylinositol (SPMVPI) fractions of synaptosomal plasma membrane vesicles (SPMV) isolated from bovine cerebral cortex. In a dose-dependent manner, barbiturates decreased the excimer to monomer fluorescence intensity ratio (I'/I) of Py-3-Py and increased the anisotropy(r), rotational relaxation time (P), limiting anisotropy $(r_infty)$, and order parameter (S) of DPH in SPMVPC, SPMVPS and SPMVPI. This indicates that barbiturates decreased both the lateral and rotational diffusion of the probes in SPMVPC, SPMVPS and SPMVPI. The relative potencies of barbiturates in ordering the membranes were in the order: pentobarbital > hexobarbital > amobarbital > phenobarbital. This order correlates well with the anesthetic potencies of barbiturates and the potencies for enhancement of $\gamma$-aminobutyric acid-stimulated chloride uptake. Thus, it is strongly suggested that a close relationship might exist between the membrane ordering effects of barbiturates and the chloride fluxes across SPMV.

  • PDF

Dynamics of C60 Molecules in Biological Membranes: Computer Simulation Studies

  • Chang, Rak-Woo;Lee, Ju-Min
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권11호
    • /
    • pp.3195-3200
    • /
    • 2010
  • We have performed molecular dynamics simulations of atomistic models of $C_{60}$ molecules and DMPC bilayer membranes to study the static and dynamic effects of carbon nanoparticles on biological membranes. All four $C_{60}$-membrane systems were investigated representing dilute and concentrated solutions of $C_{60}$ residing either inside or outside the membrane. The concentrated $C_{60}$ molecules in water phase start forming an aggregated cluster. Due to its heavy mass, the cluster tends to adhere on the surface of the bilayer membrane, hindering both translational and rotational diffusion of individual $C_{60}$. On the other hand, once $C_{60}$ molecules accumulate inside the membrane, they are well dispersed in the central region of the bilayer membrane. Because of the homogeneous dispersion of $C_{60}$ inside the membrane, each leaflet is pushed away from the center, making the bilayer membrane thicker. This thickening of the membrane provides more room for both translational and rotational motions of $C_{60}$ inside the membrane compared to that in the water region. As a result, the dynamics of $C_{60}$ inside the membrane becomes faster with increasing its concentration.

순수 타이타늄의 기계적 특성에 미치는 마찰 교반 용접 공정 조건의 영향 (Microstructure and Mechanical Properties of Pure Titanium Processed using Friction Stir Welding)

  • 이용재;최안드레;이승준;;신세은;이동근
    • 열처리공학회지
    • /
    • 제32권3호
    • /
    • pp.124-130
    • /
    • 2019
  • Friction stir welding is one of the interesting welding methods for titanium and its alloy which proceeds with plastic flow due to thermo-mechanical stirring and friction heat. Solid-state welding can solve severe problems such as high-temperature oxidation, interstitial oxygen diffusion and grain coarsening by liquid-state welding. Dynamic recrystallization and grain refinement can vary significantly with the plunging load and rotational speed of tool during friction stir welding, and suitable process conditions must be optimized to obtain microstructure and better mechanical characteristics. Suitable FSW conditions were 1000 kg of plunging load and 200 rpm of rotational speed and it showed YS 270 MPa, UTS 332.1 MPa, and El 17.3%, which were very similar to those of wrought titanium sheet.

Molecular Dynamics Simulation Studies of Physico Chemical Properties of Liquid Pentane Isomers

  • 이승구;이송희
    • Bulletin of the Korean Chemical Society
    • /
    • 제20권8호
    • /
    • pp.897-904
    • /
    • 1999
  • We have presented the thermodynamic, structural and dynamic properties of liquid pentane isomers - normal pentane, isopentane, and neopentane - using an expanded collapsed atomic model. The thermodynamic properties show that the intermolecular interactions become weaker as the molecular shape becomes more nearly spherical and the surface area decreases with branching. The structural properties are well predicted from the site-site radial, the average end-to-end distance, and the root-mean-squared radius of gyration distribution func-tions. The dynamic properties are obtained from the time correlation functions - the mean square displacement (MSD), the velocity auto-correlation (VAC), the cosine (CAC), the stress (SAC), the pressure (PAC), and the heat flux auto-correlation (HFAC) functions - of liquid pentane isomers. Two self-diffusion coefficients of liquid pentane isomers calculated from the MSD's via the Einstein equation and the VAC's via the Green-Kubo relation show the same trend but do not coincide with the branching effect on self-diffusion. The rotational re-laxation time of liquid pentane isomers obtained from the CAC's decreases monotonously as branching increases. Two kinds of viscosities of liquid pentane isomers calculated from the SAC and PAC functions via the Green-Kubo relation have the same trend compared with the experimental results. The thermal conductivity calculated from the HFAC increases as branching increases.

미세 X선 단층촬영 기법의 개발과 적용 (Development of X-ray Micro Computed Tomography and Applications)

  • 김승곤;임재홍;김보흠;이의재;이상준
    • 한국가시화정보학회지
    • /
    • 제8권2호
    • /
    • pp.45-50
    • /
    • 2010
  • The objective of this study is to elucidate the feasibility of synchrotron X-ray micro CT as a non-destructive imaging method to visualize the three-dimensional morphological structures of biological and non-biological samples. The experiments were conducted in 7B2 X-ray micro CT beamline in Pohang Accelerate Laboratory (PAL). A rotational 3-axis stage was specially designed for $0^{\circ}-180^{\circ}$ scanning of test samples. Preliminary tests were performed for opaque samples including a mosquito head, a plant seed and gas diffusion layer (GDL) of polymer electrolyte fuel cell to verify the feasibility of the X-ray micro CT. It visualized clearly the internal structure of all the test samples, supporting its usefulness.

미세 매연입자의 응집을 위한 초음파장의 적용 (Application of Ultrasonic for agglomeration of fine soot particles)

  • 정상현;홍원석;심성훈;김용진;이성범
    • 한국연소학회지
    • /
    • 제8권2호
    • /
    • pp.41-49
    • /
    • 2003
  • Ultrasonic field of 28kHz with sound pressure level 162dB has been employed to agglomerate the fine soot particle produces in a diffusion flame in a chamber. The agglomeration process has been investigated with digital camcorder and analysed in terms of the decrease of number density with exposure time. From the observation of agglomeration process, the initial agglomeration has been carried out during the short time, and it has been dominated by the orthokinetic collision. Thereafter, a slower agglomeration mechanism, driven by acoustic streaming in the chamber takes over and agglomeraters grew to diameters of several millimeters were levitated at the pressure node of the acoustic wave. And, the circular disk shape of large agglomeraters with the rotational and translational motion is observed.

  • PDF

극초음속 희박유동 해석을 위한 축대칭 다화학종 GH 방정식의 개발 (EVELOPMENT OF AXISYMMETRIC MULTI-SPECIES GH EQUATION FOR HYPERSONIC RAREFIED FLOW ANALYSES)

  • 안재완;김종암
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 학술대회
    • /
    • pp.84-91
    • /
    • 2008
  • Generalized hydrodynamic (GH) theory for multi-species gas and the computational models are developed for the numerical simulation of hypersonic rarefied gas flow on the basis of Eu's GH theory. The rotational non-equilibrium effect of diatomic molecules is taken into account by introducing excess normal stress associated with the bulk viscosity. The numerical model for the diatomic GH theory is developed and tested. Moreover, with the experience of developing the dia-tomic GH computational model, the GH theory is extended to a multi-species gas including 5 species; O$_2$, N$_2$, NO, O, N. The multi-species GH model includes diffusion relation due to the molecular collision and thermal phenomena. Two kinds of GH models are developed for an axisymmetric flow solver. By compar-ing the computed results of diatomic and multi-species GH theories with those of the Navier-Stokes equations and the DSMC results, the accuracy and physical consistency of the GH computational models are examined.

  • PDF

극초음속 희박유동 해석을 위한 축대칭 다화학종 GH 방정식의 개발 (EVELOPMENT OF AXISYMMETRIC MULTI-SPECIES GH EQUATION FOR HYPERSONIC RAREFIED FLOW ANALYSES)

  • 안재완;김종암
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년 추계학술대회논문집
    • /
    • pp.84-91
    • /
    • 2008
  • Generalized hydrodynamic (GH) theory for multi-species gas and the computational models are developed for the numerical simulation of hypersonic rarefied gas flow on the basis of Eu's GH theory. The rotational non-equilibrium effect of diatomic molecules is taken into account by introducing excess normal stress associated with the bulk viscosity. The numerical model for the diatomic GH theory is developed and tested. Moreover, with the experience of developing the dia-tomic GH computational model, the GH theory is extended to a multi-species gas including 5 species; $O_2,\;N_2$, NO, O, N. The multi-species GH model includes diffusion relation due to the molecular collision and thermal phenomena. Two kinds of GH models are developed for an axisymmetric flow solver. By compar-ing the computed results of diatomic and multi-species GH theories with those of the Navier-Stokes equations and the DSMC results, the accuracy and physical consistency of the GH computational models are examined.

  • PDF