• Title/Summary/Keyword: Rotational crop

Search Result 26, Processing Time 0.028 seconds

Effects of Green Manure Crops on Growth and Yield of Carrot for Reduction of Continuous Cropping Injury of Carrot through Crop Rotation (당근 연작장해 경감을 위한 녹비작물 재배가 당근 생육 및 수량에 미치는 영향)

  • Kim, Seong-Heon;Seo, Dong-Cheol;Park, Jong-Hwan;Lee, Seong-Tae;Lee, Sang-Won;Kim, Hong-Chul;Cho, Ju-Sik;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.4
    • /
    • pp.279-286
    • /
    • 2013
  • BACKGROUND: Soil incorporation of green manure crop(GMC) is one of the methods for reducing continuous cropping injury and increasing yield of carrot. The purpose of this study was to evaluate the effects of green manure crops on growth and yield of carrot for reduction of continuous cropping injury of carrot through crop rotation. METHODS AND RESULTS: To reduce the injury by continuous cropping system(CCS) of carrot cultivation, GMCs such as crotalaria and sudangrass were applied, which GMC was sowed in latter-June and returned to soil in latter-October. Nutrient contributions of N, $P_2O_5$, $K_2O$, CaO, and MgO in crotalaria were 8.3, 7.5, 4.4, 7.8, and 2.1 kg/10a, respectively. Nutrient contributions of N, $P_2O_5$, $K_2O$, CaO, and MgO in sudangrass were 8.4, 8.6, 26.8, 0.3, and 2.7 kg/10a, respectively. After incorporation of GMCs into soil, bulk density in soil with GMCs was lower than that in soil without GMCs(control). In soil after incorporation of GMCs, pH was not different in all treatment conditions, and ranged from 6.37~6.64. EC in soil after incorporation of GMCs was lower than that in soil without GMCs. The OM, T-N, and avail. $P_2O_5$ contents in soil with GMCs were higher than those in soil without GMCs. The growth and yields were increased as 39.2%(6,226 kg/10a) in the rotational cropping system(RCS) as compared to continuous cropping system(control and without NPK) of 4,473 kg/10a. Crotalaria cultivation were the most effective crop for reducing the injury of continuous cropping of carrot. CONCLUSION(S): This study suggest that the RCS using GMCs showed lower disease outbreak density in soil for carrot cultivation as compared to CCS without GMCs. Especially, the GMCs good effect for reduction of continuous cropping injury of carrot.

Research of Non-integeral Spatial Interpolation for Precise Identifying Soybean Location under Plastic Mulching

  • Cho, Yongjin;Yun, Yeji;Lee, Kyou-seung;Oh, Jong-woo;Lee, DongHoon
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.156-156
    • /
    • 2017
  • Most crop damages have been occurred by vermin(e.g., wild birds and herbivores) during the period between seeding and the cotyledon level. In this study, to minimize the damage by vermin and acquire the benefits such as protection against weeds and maintenance of water content in soil, immediately vinyl mulching after seeding was devised. Vinyl mulching has been generally covered with black color vinyl, that crop seeding locations cannot be detected by visible light range. Before punching vinyl, non-contact and non-destructive methods that can continuously determine the locations are necessary. In this study, a crop position detection method was studied that uses infrared thermal image sensor to determine the cotyledon position under vinyl mulch. The moving system for acquiring image arrays has been developed for continuously detecting crop locations under plastic mulching on the field. A sliding mechanical device was developed to move the sensor, which were arranged in the form of a linear array, perpendicular to the array using a micro-controller integrated with a stepping motor. The experiments were conducted while moving 4.00 cm/s speed of the IR sensor by the rotational speed of the stepping motor based on a digital pulse width modulation signal from the micro-controller. The acquired images were calibrated with the spatial image correlation. The collected data were processed using moving averaging on interpolation to determine the frame where the variance was the smallest in resolution units of 1.02 cm. For this study, the spline method was relatively faster than the other polynomial interpolation methods, because it has a lower maximum order of formulation when using a system such as the tridiagonal linear equation system which provided the capability of real-time processing. The temperature distribution corresponding to the distance between the crops was 10 cm, and the more clearly the leaf pattern of the crop was visually confirmed. The frequency difference was decreased, as the number of overlapped pixels was increased. Also the wave pattern of points where the crops were recognized were reduced.

  • PDF

Behavior of the soil residues of the fungicide hexaconazole in a rice plants-grown microecosystem (pot) (살균제 hexaconazole 토양잔류물의 벼 재배 microecosystem(pot)중 행적)

  • Kyung, Kee-Sung;Lee, Byung-Moo;Lee, Jae-Koo
    • The Korean Journal of Pesticide Science
    • /
    • v.8 no.3
    • /
    • pp.198-209
    • /
    • 2004
  • In order to elucidate the behavior of the fungicide hexaconazole in soil and rice plants, rice plants were grown for 42 days in a microecosystem (pot) containing fresh and 28 day-aged soil residues of $[^{14}C]$hexaconazole. The amount of $^{14}CO_2$ evolved during 28 days of aging was 0.11 % of total $^{14}C$-radioactivity treated and the averaged weekly degradation rate was 0.03%. Mineralization rates for 42 days of rice cultivation on fresh and aged paddy soils were 0.67% of the total $^{14}C$ in case of non-rice planting on aged soil and 1.17% in case of rice planting on aged soil, whereas 1.25% in non-rice planting on fresh soil and 1.72% in case of rice planting on fresh soil, suggesting that the amounts of $^{14}CO_2$ were evolved higher from fresh soils than aged ones and from rice-planting soils than non-planting ones. The amounts of volatiles collected were very low as background levels. Most of $^{14}C$-Radioactivity was remained in soil after 42 days of rice cultivation and $^{14}C$ absorbed through rice roots was distributed more in shoots than roots and translocated into the edge of shoots of rice plants. Amounts of non-extractable $^{14}C$ in soils were higher in rice planted soil than in non-planting soil. The distribution of non-extractable $^{14}C$ was increased in the order of humin>fulvic acid>humic acid. The amounts of $^{14}C$ translocated into rotational crop Chinese cabbage were 2.36 and 3.69% of the total $^{14}C$ in case of rice planted soil containing fresh and aged residues, respectively, suggesting that small amounts of $[^{14}C]$hexaconazole and its metabolite(s) were absorbed and their bound residues were more available than their fresh ones to Chinese cabbage.

Consumed-Power and Load Characteristics of Potato Harvesting Operation in Dry Field (건답에서 감자수확작업의 소요동력 및 부하특성)

  • Lee, Ju-Yeon;Hwang, Seok-Joon;Nam, Ju-Seok;Kim, Jeong-Gil
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.1
    • /
    • pp.89-99
    • /
    • 2020
  • This study analyzed the load and the consumed power characteristics of a potato harvesting operation in a dry field. The potato harvesting operation was performed using an underground crop harvester mounted on an agricultural tractor with a rated engine power of 23.7 kW. The rotational speeds and the torque of the engine output shaft, rear axle, and power take-off (PTO) shaft were measured under various working conditions. The load spectrum and the consumed power were analyzed using the measured data. The results show that the consumed power of the rear axle increased as the working speed increased, while that of the PTO shaft decreased. The consumed power of the engine output shaft showed a similar trend with that of the PTO shaft, but the torque deviation was larger in the load spectrum. The results of previous studies were used to compare herein the consumed power and the load characteristics of the harvesting, rotary, and plow operations in a dry field. PTO and tractive power were highly consumed in the plow and rotary operations, respectively. The consumed power of the PTO shaft and the rear axle in the harvesting operation were 29-41% and 18-23% of the engine power, respectively. Compared to those in the rotary and plow operations, the engine power was relatively evenly distributed to the PTO shaft and rear axle in the harvesting operation.

Effects of Ridge Width on Growth and Yield of Proso Millet (Panicum miliaceum L.) in Paddy-Upland Rotation Field (답전윤환지에서 이랑너비에 따른 기장의 생육특성 및 수량)

  • Yoon, Dong-Kyung;Oh, Seung-Ka;Lee, Byung-Jin;Chun, Hyun-Sik;Jung, Ki-Youl;Kang, Hang-Won;Jeon, Seung-Ho;Cho, Young-Son
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.60 no.2
    • /
    • pp.217-223
    • /
    • 2015
  • This study was conducted to serve as a basis for establishing a stable production of proso millet on the rotational paddy-upland field by looking out the physicochemical and moisture characteristics of soil and the growth characteristics of proso millet by ridge width. Plant height showed Manhongchal was the smallest 71.3 cm in 240 cm wide of ridge in the first year, Ibeakchal was the highest 69.7 cm in 60 cm wide in the second year, Hwanggeumchal was the highest 72.8 cm in 60 cm wide in the first year. The retention time of the excess water in the soil during cultivation was extended wider the width of ridge. The variation width of the water content was higher by the wider the width of ridge. Yield components showed the longest ear length were 35.1 cm of Manhongchal, 34.8 cm of Ibeakchal in 60 cm wide of ridge in the first year. As the width of ridge extended, ear weight of all variety increased. 1,000 seed weight of the 60 cm wide of ridge was Manhongchal 6.8%, Ibeakchal 46.2% heavier than the 240 cm wide of ridge. Yield showed Manhongchal 221, Ibeakchal 223, Hwanggeumchal $225kg{\cdot}10a^{-1}$ in 60 cm wide of ridge in the first year. The similar pattern of amount showed Manhongchal 278, Ibeakchal 221, Hwanggeumchal $200kg{\cdot}10a^{-1}$ in 60 cm wide of ridge in the second year. This showed Manhongchal 103%, Ibeakchal 119%, Hwanggeumchal 85.2% was more than the 240 cm wide of ridge.

Effects of Green Manure Crops on Tomato Growth and Soil Improvement for Reduction of Continuous Cropping Injury through Crop Rotation in Greenhouse (토마토 시설재배지 토양에서 단기 녹비작물 재배가 연작장해 토양 개량 및 토마토 생육에 미치는 영향)

  • Jung, Yu Jin;Nou, III Sup;Kang, Kwon Kyoo
    • Korean Journal of Plant Resources
    • /
    • v.28 no.2
    • /
    • pp.263-270
    • /
    • 2015
  • To reduce the injury by continuous cropping system of tomato cultivation, green manure crops (GMCs) such as hairy vetch and rye were applied, Nutrient contributions of N, P2O5, K2O, CaO, and MgO in hairy vetch were 26.2, 5.8, 10.2, 6.6, and 1.5 ㎏/10a, respectively. Nutrient contributions of N, P2O5, K2O, CaO, and MgO in rye were 9.1, 4.2, 11.8, 3.8, and 3.1 ㎏/10a, respectively. After incorporation of GMCs into soil, bulk density in soil with GMCs was lower than that in soil without GMCs (control). In soil after incorporation of GMCs, pH was not different in all treatment conditions, and ranged from 6.37~6.52. EC in soil after incorporation of GMCs was lower than that in soil without GMCs. The OM, T-N, and avail. P2O5 contents in soil with GMCs were higher than those in soil without GMCs. The tomato growths were increased in the rotational cropping system (RCS) as compared to continuous cropping system (control and without NPK). Also the density of Pseudomonas corrugata in soil with GMCs was lower than that in soil without GMCs (control). This study suggest that the RCS using GMCs showed lower disease outbreak density in soil for tomato cultivation as compared to RCS without GMCs. Especially, the GMCs was good effect for reduction of continuous cropping injury of tomato.