• 제목/요약/키워드: Rotational Torque

검색결과 290건 처리시간 0.255초

축방향 공극형 Wobble 모터의 토오크 특성 및 힘 분포 해석 (Analysis of Torque and Force Distribution of Axial-Gap Type Wobble Moto)

  • 우성봉;이은웅;윤서진;김성종;최재영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 A
    • /
    • pp.9-11
    • /
    • 1999
  • This paper presents the problems of design and theoretical model of electrostatically driven axial-gap type wobble motor. The motor design benefits from large axial rotor-to-stator overlap and large gear ratios, and motor designs with rotor radii of 50 and $100{\mu}m$ are capable of generating torques in the [nNm] range at high electrostatic fields. Because of the large gear ratio, smaller angular steps and lower rotational speed are obtained, compared to radial-gap motor design. Aspects like gear ratio, torque generation, excitation schemes and torque coverage, normal forces, friction are addressed.

  • PDF

DEVELOPMENT OF DCT VEHICLE PERFORMANCE SIMULATOR TO EVALUATE SHIFT FORCE AND TORQUE INTERRUPTION

  • Park, S.J.;Ryu, W.S.;Song, J.G.;Kim, H.S.;Hwang, S.H.
    • International Journal of Automotive Technology
    • /
    • 제7권2호
    • /
    • pp.161-166
    • /
    • 2006
  • This paper presents shift characteristics of a dual clutch transmission(DCT). To obtain the shift force, dynamic models of the DCT are constructed by using MATLAB/Simulink and considering the rotational inertia of every component and the target pre-select time. Dynamic models of the shift and clutch actuators are derived based on the experimental results of the dynamic characteristics test. Based on the dynamic model of the DCT synchronizer, control actuator and vehicle model, a DCT vehicle performance simulator is developed. Using the simulator, the shift force and speed of the relevant shafts are obtained. In addition, the torque and acceleration of actuators are calculated during the shift process by considering the engaging and disengaging dynamics of the two clutches. It is observed from the performance simulator that uninterrupted torque can be transmitted by proper control of the two clutches.

은닉 마르코프 모델을 이용한 속도 변화가 있는 회전 기계의 상태 진단 기법 (Condition Monitoring of Rotating Machine with a Change in Speed Using Hidden Markov Model)

  • 장미;이종민;황요하;조유종;송재복
    • 한국소음진동공학회논문집
    • /
    • 제22권5호
    • /
    • pp.413-421
    • /
    • 2012
  • In industry, various rotating machinery such as pumps, gas turbines, compressors, electric motors, generators are being used as an important facility. Due to the industrial development, they make high performance(high-speed, high-pressure). As a result, we need more intelligent and reliable machine condition diagnosis techniques. Diagnosis technique using hidden Markov-model is proposed for an accurate and predictable condition diagnosis of various rotating machines and also has overcame the speed limitation of time/frequency method by using compensation of the rotational speed of rotor. In addition, existing artificial intelligence method needs defect state data for fault detection. hidden Markov model can overcome this limitation by using normal state data alone to detect fault of rotational machinery. Vibration analysis of step-up gearbox for wind turbine was applied to the study to ensure the robustness of diagnostic performance about compensation of the rotational speed. To assure the performance of normal state alone method, hidden Markov model was applied to experimental torque measuring gearbox in this study.

플라우 및 로터리 작업 시 농업용 관리기의 엔진 부하율 분석 (Analysis of Engine Load Factor for Agricultural Cultivator during Plow and Rotary Tillage Operation)

  • 이시언;김택진;김용주;임류갑;김완수
    • 드라이브 ㆍ 컨트롤
    • /
    • 제20권2호
    • /
    • pp.31-39
    • /
    • 2023
  • The aim of this study was to measure and analyze engine load factor (LF) according to working conditions (operation type and gear stage) of small agricultural multi-purpose cultivator to estimate the emission of air pollutants. To calculate LF, a torque sensor capable of collecting torque and rotational speed was installed on the engine output shaft and DAQ was used to collect data. A field test was conducted with major operation of a cultivator and tillage operations (plow tillage and rotary tillage). Engine power was calculated using engine torque and rotational speed and LF was calculated using real-time power and rated power. In addition, unified LF was calculated using the weight for each operation and the average LF for each operation. As a result, average LF values at 1.87 and 3.10 km/h by plow tillage were 0.50 and 0.69, respectively. Average LF values at 1.87 and 3.10 km/h by rotary tillage were 0.70 and 0.78, respectively. Furthermore, unified LF calculated in consideration of the weight factor showed a value of 0.65, which was 135% higher than the conventional LF (0.48). Results of this study could be used as basic information for realizing LF values in the field of agricultural machinery.

유한요소법을 이용한 V형상 극변환 메모리 모터의 특성 분석 (Characteristics Analysis of V Shape Pole Changing Memory Motor using Finite Element Method)

  • 김영현;김수용;김정우;이중호
    • 전기학회논문지
    • /
    • 제64권6호
    • /
    • pp.872-877
    • /
    • 2015
  • The Permanent Magnet (PM) machine used at speed control using field-weakening control method. But the field-weakening current, which reduces the field flux for high speeds, causes significant copper and core losses. Therefore, this paper deals with the PM performance evaluations in a pole changing memory motor (PCMM). The PCMM can change the number of magnetic poles and produce two types of torque. When the motor operates with eight poles, it produces a magnetic torque at low rotational speeds. When the motor changes to four poles, it produces both magnetic torque and reluctance torque at high speeds. The paper explain the principle and basic characteristics of the motor by using a finite element method magnetic-field analysis, which consists of a PM magnetized by a pulse d-axis current of the armature winding. The results of our experiment show that the proposed motor reduces core loss by 10% and 55% under no-load and load conditions, and doubles the speed range of the motor.

Wheel의 원반 진동을 고려한 외경연삭 주축의 동특성 (Dynamic Chanrateristics of Spindle for the External Cylindrical Grinding Machine Considered the Shell Mode Vibration of Wheel)

  • 하재훈;이선규
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.1000-1004
    • /
    • 1995
  • In the case of the external cylindrical grinding machine, the grinding mechanism can cause a wheel to vibrate due to a wheel cutter. This phenomena will bring about the unsymmetric wear up to high frequency without any relation of rotational speed. So far, when the grinding spindle is analyzed, it is assumed that a wheel is considered as lumped mass at the endof a beam. Nowadays, there is a tendency to use the wheel with a lsrge diameter or CBN wheel to achieve the high speed and accuracy grinding performance. Therefore, this kind of assumption is no longer valid. At the analysis of the grinding spindle, the parameter which dapends on the dynamic characteristics is a combination force between each part. For example, there is the tightness torque of a bolt and taper element in the grindle. In addition, the material property of the wheel can contribute the dynamic characteristics. This paper shows the mode participation of the shell mode of the wheel in the grindle and the dynamic characteristics according to the parameters which are the configuration of the flange and tightness torque of a bolt and taper. Modal parameter of the wheel, flange and the spindle can be extracted through frequency response function obtained by modal test. After that, by changing the tightness torque and kinds of wheel, we could accomplish the test in the whole combined grinding spindle. To perform modal analysis of vibration characteristics in the grinding spindle, we could develop the model of finite element method.

  • PDF

고속 회전 풍력 시스템의 로터 설계 인자에 따른 공력 소음 해석 연구 (Aerodynamic Noise Analysis of High Speed Wind Turbine System for Design Parameters of the Rotor Blade)

  • 이승민;김호건;손은국;이수갑
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.521-524
    • /
    • 2009
  • This study describes aerodynamic noise of high speed wind turbine system, which is invented as a new concept in order to reduce the torque of main shaft, for design parameters of the rotor blade. For parametric study of high speed rotor aerodynamic noise, Unsteady Vortex Lattice Method with Nonlinear Vortex Correction Method is used for analysis of wind turbine blade aerodynamic and Farassat1A and Semi-Empirical are used for low frequency noise and airfoil self noise. Parameters are chord length, twist and rotational speed for this parametric research. In the low frequency range, the change of noise is predicted the same level as each parameters varies. However, in case of broadband noise of blade, the change of rotational speed makes more variation of noise than other parameters. When the geometric angles of attack are fixed, as the rotational speed is increased by 5RPM, the noise level is increased by 4dB.

  • PDF

드릴가공시 신경망에 의한 공구 이상상태 검출에 관한 연구 (A Study on the Detection of the Abnormal Tool State for Neural Network in Drilling)

  • 신형곤;김민호;김태영;김대성
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.1021-1024
    • /
    • 2001
  • Out of all metal-cutting processes, the hole-making process is the most widely used. It is estimated to be more than 30% of the total metal-cutting process. It is therefore desirable to monitor and detect drill wear during the hole-drilling process. In this paper, the vision system of the sensing methods of drill flank wear on the basis of image processing is used to detect the wear pattern by non-contact and direct method and get the reliable wear information about drill. In image processing of acquired image, median filter is applied for noise removal. The vision flank wear area of the drill was measured. Backpropagation neural networks (BPns) were used for no-line detection of drill wear. The neural network consisted of three layers: input, hidden and output. The input vectors comprised of spindle rotational speed, feed rates, vision flank wear, thrust and torque signals. The output was the drill wear state which was either usable or failure. Drilling experiments with various spindle rotational speed and feed rates were carried out. The learning process was peformed effectively by utilizing backpropagation. The detection of the abnormal states using BPNs achieved 96.4% reliability even when the spindle rotational speed and feedrate were changed.

  • PDF

Turbine Performance Experiments for the Turbopump of a Liquid Rocket Engine

  • Lee, Hanggi;Shin, Juhyun;Jeong, Eunhwan;Choi, Changho
    • International Journal of Aerospace System Engineering
    • /
    • 제3권1호
    • /
    • pp.25-29
    • /
    • 2016
  • This paper highlights the performance of an impulse turbine which is a part of turbopump in a liquid rocket first stage engine. The turbopump, currently under development at Korea Aerospace Research Institute, has an impulse type turbine with 12 nozzles and a single rotor. The impulse turbine can archive high specific power with the low gas flow rates. The supersonic impulse turbine with a single rotor can make a simple structure. High-pressure gases are converted into the dynamic energy with flows through the 12 nozzles and drive the rotor to make the power for the pumps. The turbine test was performed in the high-pressured turbine test facility with air gas instead of burned gas. A hydraulic dynamometer was used to absorb the power from the turbine and control the rotational speed and torque. The test points were at several pressure ratios with 7 different rotational speeds. Results showed the efficiency was highest at the design pressure ratio. The efficiency was insensitive to the pressure ratio variation than the rotational speed. It was a typical characteristic in an impulse turbine.

An Experimental Study of the Performance Characteristics with Four Different Rotor Blade Shapes on a Small Mixed-Type Turbine

  • Cho Soo-Yong;Cho Tae-Hwan;Choi Sang-Kyu
    • Journal of Mechanical Science and Technology
    • /
    • 제19권7호
    • /
    • pp.1478-1487
    • /
    • 2005
  • A small mixed-type turbine with a diameter of 19.9 mm has been substituted for a rotational part of pencil-type air tool. Usually, a vane-type rotor is applied to the rotational part of the air tool. However, the vane-type rotor has some problems, such as friction, abrasion, and necessity of accurate assembly etc.,. These problems make the life time of the vane-type air tool short, but air tools operated by mixed-type turbines are free of friction and abrasion because the turbine rotor dose not contact with the casing. Moreover, it is assembled easily because of no axis offset. These characteristics are merits for using air tools, but loss of power is inevitable on a non-contacting type rotor due to flow loss, tip clearance loss, and profile loss etc.,. In this study, four different rotors are tested, and their characteristics are investigated by measuring the specific output power. Additionally, optimum nozzle location against the rotor is studied. Output powers are obtained through measured pressure, temperature, torque, rotational speed, and flow rate. The experimental results obtained with four different rotors show that the rotor blade shape greatly influences to the performance, and the optimum nozzle location exists near the mid span of the rotor.