• Title/Summary/Keyword: Rotational Speed

Search Result 1,123, Processing Time 0.023 seconds

Development of penetration rate model and optimum operational conditions of shield TBM for electricity transmission tunnels (터널식 전력구를 위한 순굴진율 모델 개발 및 이를 활용한 쉴드TBM 최적운전 조건 제안)

  • Kim, Jeong-Ju;Ryu, Hui-Hwan;Kim, Gyeong-Yeol;Hong, Seong-Yeon;Jeong, Ju-Hwan;Bae, Du-San
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.6
    • /
    • pp.623-641
    • /
    • 2020
  • About 5 km length of tunnels were constructed by mechanized tunnelling method using closed type shield TBM. In order to avoid construction delay problems for ensuring timely electricity transmission, it is necessary to increase the prediction accuracy of the excavation process involving machines according to rock mass types. This is important to corroborate the project duration and optimum operation for various considerations involved in the machine. So, full-scale tunnelling tests were performed for developing the advance rate model to be appropriately used for 3.6 m diameter shield TBM. About 100 test cases were established and performed using various operational parameters such as thrust force and rotational speed of cuttterhead in representative uniaxial compressive strengths. Accordingly, relationships between normal force and penetration depth and, between UCS and torque were suggested which consider UCS and thrust force conditions according to weathered, soft, hard rocks. Capacity analysis of cutterhead was performed and optimum operational conditions were also suggested based on the developed model. Based on this study, it can be expected that the project construction duration can be reduced and users can benefit from the provision of earlier service.

Development of Tacho Generator for Application of Anti-aircraft Weapon System (대공무기체계 적용을 위한 타코제너레이터 개발)

  • Byun, Kisik;Park, Jun Young;Cho, Sung-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.174-180
    • /
    • 2020
  • This paper presents the development of a tacho generator that is applicable to a DC motor for anti-aircraft weapon systems. In general, devices such as tacho generators and resolvers are used as feedback devices for controlling DC motors. A tacho generator with a wide operating temperature range was developed, which has robust characteristics against shock loads and vibrations according to the operational characteristics of anti-aircraft weapon systems. The target specifications were set based on the requirements of the tacho generator currently in operation. A rotor coupled to the shaft of the motor and a stator coupled to the housing of the motor were then designed and manufactured. The inductance was 31.0 mH, the terminal resistance was 147.7 ohms, and the rotational measurement factor was satisfactory under both normal operation and operating conditions after the maximum speed for the standard of 9.500 ± 0.475 V/krpm. In addition, the environmental suitability of the applied equipment was confirmed through the rate of change in unit temperature, and it was found that the temperature characteristics were all within 0.03 %/℃.

DEVELOPMENT OF A PERSIMMON HARVESTING SYSTEM

  • Kim, S. M.;Park, S. J.;Kim, C. S.;Kim, M. H.;Lee, C. H.;J. Y. Rhee
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.472-479
    • /
    • 2000
  • A persimmon harvesting vehicle that can be operated in hilly orchards as well as a manipulator that can be used to harvest persimmons located in remote positions in the trees were designed and developed. The vehicle could be operated with keeping balanced position in an inclined field and its working platform could be moved up and down easy to approach fruits in a remote region with the aids of a hydraulic and a electrical and electronics systems. The weight of the vehicle was 927 kg and the center of gravity was located at 427 mm to the inner side from the center of a right driving caterpillar, 607 mm to a rear axle from the center of a front axle, and 562 mm to upward from ground. The automatic level control sensor for leveling the working platform was activated within 14.5 ∼ 16.5 degrees of slope variation. The total length of the manipulator was 1.39 m and weight is 975 g. It was powered by a 12 V geared motor to detach persimmon fruits with a rotational force. The gripper was made of plastic and rubber to increase a frictional force. In a performance evaluation test, static tipping angle, dynamic tipping angle toward front side when the vehicle was moving downward, climbing angle, driving speed of the vehicle were measured or calculated. In persimmon harvesting tests 24.9% of yield was increased by hand picking with the aid of the vehicle and additional 7% of yield were increased when the manipulator was used. Therefore, 99010 of total possible yield was achievable when both of the vehicle and the manipulator were used for the manual persimmon harvesting. Increase in 22.5% of total yield was achieved with the manipulator only.

  • PDF

Evaluation of Screw Conveyor Model Performance depending on the Inclined Angle by Discrete Element Method (개별요소법을 활용한 경사각에 따른 스크루 컨베이어 모델 성능 평가)

  • Park, Byungkwan;Choi, Soon-Wook;Lee, Chulho;Kang, Tae-Ho;Chang, Soo-Ho
    • Tunnel and Underground Space
    • /
    • v.29 no.6
    • /
    • pp.379-393
    • /
    • 2019
  • For the economical construction of a tunnel by TBM, the selection of TBM optimized with the various project conditions is important, and also necessary to predict the performances of selected TBM in advance. This study was conducted to comprehensively evaluate the performance of the EPB shield TBM screw conveyor by the discrete element method. The sticky particles were used for the excavated material models, and screw conveyor with 11 different inclined angles were simulated to evaluate the performance depending on the different inclined angles. The four different rotational speed conditions of the screw were used, and torque, required power, extra energy for muck discharge, and the muck discharge rate were selected as four performance indicators. As a result, the optimized inclined angle was selected, and selected angle accords with the fact that EPB shield TBM screw conveyor is generally installed and adjusted at the inclined angle between 20.0° and 30.0° in the field.

Ball Velocity Changes Depending on the Different Linear Momentum of Putter Head during the Putting Strokes (퍼팅 스트로크에서 퍼터의 선 운동량 크기에 따른 볼의 이동 속도 변화에 관한 연구)

  • Park, Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.4
    • /
    • pp.83-88
    • /
    • 2007
  • The purpose of this study was to investigate the ball velocity changes depending on the different linear momentum of putter head. For this study, two different moving conditions(25cm free fall and 35cm free fall) of putter head were set. And two different types of ground conditions were used which are artificial grass green($180cm{\times}600cm{\times}1cm$) and glass green($40cm{\times}130cm{\times}1cm$). Movements of putter head and ball were recorded with 2 HD video cameras(60 Hz, 1/500s shutter speed). Small size control object($18.5cm{\times}18.5cm{\times}78.5cm$) was used in this study. Ball and putter head velocities were calculated by the First Central Difference Method(Hamill & Knutzen, 1995). Linear momentum of ball and putter head were calculated with mass and its velocities. Before impact, the velocity of the putter head of 35cm free fall was about 30% greater than that of the putter head of 25cm free fall. Linear momentum of putter head of 35cm free fall was about 0.355-0.364kg m/s and 25cm free fall was 0.251 kg m/s. After impact, putter head lost its linear momentum about 14-19% and adjusting time of putter head after impact would be 0.1 second. After 0.1 second, putter moved the route same as before impact. Maximum ball velocities were appeared 0.08s-0.10s after impact no matter what the ground conditions are. Ball velocities struck by 35cm free fall were 30 % faster than 25cm free fall. Linear momentum of ball struck by putter head was greater than that of expected amount because the moving ball has translational energy and rotational energy. Future study must treat three things. One is ball must struck by the different putters with different materials. Another is two-piece ball and three-piece ball should be used for the same condition studies. The other is height of center of rotation of club should be changed. In this study, the height of center of rotation of club head is 71cm from the ground. But recently many golfers used the long putter. Therefore next study should apply the different height of center of rotation of club head.

Changes of Various Balls Velocity under the Different Surface Conditions after Impact (충돌 후 지면 조건에 따른 다양한 볼의 속도변화에 관한 연구)

  • Park, Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.1
    • /
    • pp.91-97
    • /
    • 2007
  • The purpose of this study was to investigate the changes of various balls velocity under the different surface conditions after impact. For this study, four different balls were used which are golf ball, tang-tang ball, table tennis ball, and iron ball. And two different types of ground conditions were used which are artificial grass green and glass green. Movements of putter head and ball were recorded with 2 HD video cameras(60 Hz, 1/500s shutter speed). Small size control object($18.5cm{\times}18.5cm{\times}78.5cm$) was used in this study. To transfer the same amount of kinetic energy to the ball, pendulum putting machine was used. Analyzing the process of impact and the ball movement, a putter was digitized the whole movement but the ball was digizited within the 50cm movement. Velocities were calculated by the first central difference method(Hamill & Knutzen, 1995). Putter head velocities were about 112.2cm/s-116.2cm/s at impact. Maximum ball velocities were appeared 0.08s-0.10s after impact no matter what the ground conditions are. Table tennis ball recorded higher ball velocities than the other ball velocities and iron ball recorded the lowest ball velocity in this group. But Table tennis ball was influenced with the frictional force and immediately was decreased at the artificial grass green condition. If an object is received the kinetic energy under the static condition(v=0cm/s), the object recorded the maximum velocity shortly after the impact and then decreased the velocity because of the frictional force. The ball distance from the start position to the peak velocity position is about 6cm-10cm under the 112.2cm/s-116.2cm/s putting velocity with putter. 0.25 seconds later after impact balls were placed 40cm distance from the original position except iron ball. In this study, ball moving distances were too short therefore it was not possible to investigate the reactions after the translational force is disappeared. Rotational force would play a major role at the end of the ball movement. Future study must accept two things. One is long distance movement of ball and the other is balanced ground. Three-piece ball is a good item to investigate the golf ball movement on the different surface conditions.

Rheological Properties of Gelatinized Model Foods (모형식품의 리올로지 특성)

  • Chun, Ki-Chul;Park, Young-Deok;Chang, Kyu-Seob
    • Korean Journal of Agricultural Science
    • /
    • v.22 no.1
    • /
    • pp.103-109
    • /
    • 1995
  • The model foods were prepared by simulating mositure, protein and starch, and they were heated for 30 mins, at $80^{\circ}C$ and then cooled at $25^{\circ}C$ in water bath. Their rheological properties were investigated by the use of Brookfield wide-gap rotational viscometer at $30{\sim}60^{\circ}C$, and the rotation speed ranged from 0.6 to 6 rpm and solid content ranged from 8% to 11%, the results obtained were as follows. 1. All the model foods ($P_1S_3$, $P_2S_2$, $P_1S_1$, $P_2S_1$, $P_3S_1$, $P_4S_0$) exhibited pseudoplastic behaviors with yeild stress and were thixotropic foods which showed time - dependent structural decays, but the starch food of 8 ~ 11 % solid content did not show the flow behavior. 2. The correlation between the rheological parameters and the protein content of model foods in various moisture content did not appeared a constant relationship. 3. The change of shear stress against shear rate in high starch foods was larger than that in high protein foods and the structure at initial shear time was decayed with a quatic equation according to the Tiu's Model and structural decay was in parallel with the increase of shear rate. 4. The temperature dependency of the apparent viscosity of $P_1S_2$, and $P_2S_1$ was fully expressed by Arrhenius equation and activation energies of their food were 2.35 and $1.34Kcal/g{\cdot}mol$, respectively.

  • PDF

A Study on the Determination of Slot's Number of Rotor to Reduce Noise and Vibration and Design the 3-Phase Induction Motor Considering Kinetic Energy in Flywheel Energy Storage System (운동 에너지를 고려한 Flywheel Energy Storage System 설계와 진동 저감을 위한 3상 유도기의 슬롯수 산정에 관한 연구)

  • Ryu, Jae Ho;Kim, Hui Min;Lee, Chee Woo;Park, Gwan Soo;Jeong, Dong Wook
    • Journal of the Korean Magnetics Society
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Flywheel Energy Storage System (FESS) is composed by flywheel generating rotating potential energy and motor/generator set charging and discharging electric potential energy. The flywheel and motor/generator is connected by rotating shaft. And torque characteristics of motor/generator part can influence charging and mechanical traits of FESS. This paper analyze about motor/generator design method of 5 [kWh] FESS and torque ripple, harmonic effects by change of slots. At First, this paper proposes a method to estimate the flywheel size and the rotor size of the motor from the the rotational kinetic energy by inertia of FESS. The number of induction motor rotor slots for torque ripple reduction in the high speed operation region is selected. This paper performs to reduce the noise and vibration of the flywheel composed of coaxial with motor/generator and flywheel and realize the high efficiency.

File System Support for Multimedia Streaming in Internet Home Appliances (인터넷 홈서버를 위한 스트리밍 전용 파일 시스템)

  • 박진연;송승호;진종현;원유집;박승민;김정기
    • Journal of Broadcast Engineering
    • /
    • v.6 no.3
    • /
    • pp.246-259
    • /
    • 2001
  • Due to recent rapid deployment of Internet streaming service and digital broadcasting service, the issue of how to efficiently support streaming workload in so called "Internet Home Appliance" receives prime interests from industry as well as academia. The underlying dilemma is that it may not be feasible to put cutting edge CPU, boards, disks and other peripherals into that type of device. The primary reason is its cost. Usually, Internet Home Appliances has its dedicated usage, e.g. Internet Radio, and thus it does not require high-end CPU nor high-end Va subsystem. The same reasoning applies to I/O subsystem. In Internet Home Appliances dedicated to handle compressed moving picture, it is not equipped with high end SCSI disk with fast rotational speed. Thus, it is mandatory to devise elaborate software algorithm to exploit the available hardware resources and maximize the efficiency of the system. This paper presents our experiences in the design and implementation of a new multimedia file system which can efficiently deliver the required disk bandwidth for a periodic I/O workload. We have implemented the file system on the Linux operating system, and examined itsperformance under streaming I/O workload. The results of the study show that the proposed file system exhibits superior performance than the Linux Ext2 file system under streaming I/O workload. The result of this work not only contribute to advance the state f art file system technology for multimedia streaming but also put forth the software which is readily available and can be deployed. deployed.

  • PDF

Numerical Investigation of Aerodynamic Characteristics of a Ducted Fan-Vane Configuration and Improvement of Control Performance in Hover (덕트 팬-베인 형상의 제자리 비행 공력 특성 및 조종 성능 개선에 관한 수치적 연구)

  • Kang, Dong Hun;Yim, Jinwoo;You, Heung-Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.3
    • /
    • pp.221-231
    • /
    • 2021
  • In the present study, numerical simulation was performed to investigate aerodynamic characteristics of a ducted fan-upper/lower vanes system in hover. Sensitivity analysis of aerodynamic forces for a system component was conducted with the deflection angle of upper vanes varying but at the constant rotational speed and the collective pitch angle of fan blades. Then, vane control performance and duct airload distributions were analyzed in detail to physically understand operating mechanisms of individual vane and interference effect between duct and vanes. Finally, new control concept of operating upper vanes has been proposed to improve the control performance of the full configuration. It is found that the side force and rolling moment of upper vanes increase linearly with the variation of those deflection angle; however, the total side force is significantly small due to the reaction force acted on the duct. It is also found that upper vanes close to the duct contraction side have a key role in changing vane control forces. It is revealed that the duct suction pressure is induced by the interaction with the suction side of upper vanes, while duct pressure recovery by the interaction with the pressure side, leading to increase in duct asymmetric force. When four upper vanes are kept in situ at 0° deflection angle or removed, the total control performance was improved with duct asymmetric force reduced and the total magnitude of roll remarkably increasing up to 80%.