• Title/Summary/Keyword: Rotational Motion Control

Search Result 129, Processing Time 0.031 seconds

Rotational Motion Control Using ER Clutch/Brake Actuators (ER 클러치/브레이크 작동기를 이용한 회전운동제어)

  • Choi, S.B.;Cheong, C.C.;Kim, J.H.;Han, M.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.8
    • /
    • pp.126-134
    • /
    • 1998
  • 본 연구에서는 회전운동을 제어하기 위한 새로운 작동기로서 전기장에 대하여 매우 빠른 응답특성을 갖고 있는 두 쌍의 실린더형 ER(electro-rheological) 클러치/브레이크 작동기를 제안하였다. 자체조성 된 ER유체의 빙햄특성 모델을 실험적으로 도출하였으며, 이와 연계한 작동기 모델을 구성하여 전기장에 따른 전달 및 제동 토크를 해석한 후 알맞은 크기의 클러치/브레이크 작동기를 제작하였다. 제작된 작동기의 동적특성(시상수 등)을 작동기 모델에 고려하기 위하여 계단입력 전기장에 따른 과도응답 실험을 클러치와 브레이크 모드에서 각각 수행하였다. 제안된 작동기의 응용성을 보이기 위하여 두쌍의 작동기로 구동되는 실험실 차원의 소형 와권식 세탁기 시스템을 구성한 후 동적지배방정식을 유도하다. 각 작동기와 연계된 PID제어기를 설계하여 세탁과 탈수시의 회전운동을 제어하였으며, 부하질량의 변화에 대한 작동기 시스템의 제어 효율성과 장시간 운전을 통한 제어 내구성 실험을 수행하였다.

  • PDF

Tool Mark Removal Method of Aspherical Glass tens Mold by Reverse-rotational Eccentric Motion (역회전 편심 운동 방식에 의한 비구면 유리렌즈 금형의 공구마크 제거 방법에 관한 연구)

  • Lee, H.C.;Kim, J.U.;Kang, H.H.;Kim, D.S.
    • Transactions of Materials Processing
    • /
    • v.18 no.2
    • /
    • pp.172-176
    • /
    • 2009
  • In this paper, new aspherical surface polishing mechanism is suggested to polish aspherical glass lens mold by both airbag polishing tool and reverse-rotational eccentric motion. Up to now, conventional aspherical lens polishing method by the small tool polishing uses the aspherical surface profile and the trajectory of the polishing tool is also controlled. However, full contact concept by airbag polishing tool and no position control make the easy polishing setup and does not need aspherical design profile. An aspherical lens polishing machine was made for this study and a tool mark removal experiment fur the fine-grounded lens mold was successfully performed.

Study on the Fabrication of Porous Uranium Oxide Granule Using a Rotary Voloxidizer (회전형 휘발성 산화장치 이용 다공성 우라늄산화물 그래뉼 제조 연구)

  • Lee, Jae-Won;Yun, Yeo-Wan;Shin, Jin-Myeong;Lee, Jung-Won;Park, Guen-IL;Park, Jang-Jin
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.642-647
    • /
    • 2011
  • The fabrication characteristics of porous uranium oxide granules from $U_3O_8$ powder was investigated in terms of initial particle bed motions such as slumping and rolling, thermal treatment conditions, and rotational velocities in slumping motion using a rotary voloxidizer. With respect to the initial particle bed motion the recovery rate of granule of above 1 mm in slumping motion was higher than that in the rolling motion. Rolling motion was changed into slumping motion with high slumping frequency by formation of granules from fine particles. Recovery rate of granule significantly increased with the increas in thermal treatment temperature and time of upto 10 h. As the rotational velocity of voloxidizer in the case of the initial particle bed showing slumping motion increased, the recovery rate of granule increased from 81.5 to 88.7%. However, the rotational velocity of 2 rpm provided an effective density, crushing strength and sphericity of granules.

Novel Methods for Spatial Position Control of a Plate In the Conductive Plate Conveyance System Using Magnet Wheels (자기차륜을 이용한 전도성 평판 이송 시스템에서 평판 위치 제어를 위한 새로운 방법)

  • Jung, Kwang Suk
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.6
    • /
    • pp.1010-1017
    • /
    • 2013
  • Two-axial electrodynamic forces generated on a conductive plate by a partially shielded magnet wheel are strongly coupled through the rotational speed of the wheel. To control the spatial position of the plate using magnet wheels, the forces should be handled independently. Thus, three methods are proposed in this paper. First, considering that a relative ratio between two forces is independent of the length of the air-gap from the top of the wheel, it is possible to indirectly control the in-plane position of the plate using only the normal forces. In doing so, the control inputs for in-plane motion are converted into the target positions for out-of-plane motion. Second, the tangential direction of the open area of the shield plate and the rotational speed of the wheel become the new control variables. Third, the absolute magnitude of the open area is varied, instead of rotating the open area. The forces are determined simply by using a linear controller, and the relative ratio between the forces creates a unique wheel speed. The above methods were verified experimentally.

Motion Control of Washing Machine Using ER Clutch & Brake Systems (ER 클러치 및 브레이크 시스템을 이용한 세탁기 운동 제어)

  • 김준호;최승복;정재천
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.546-549
    • /
    • 1995
  • This paper presents a control of washing machine using ER clutch and brake actuators. After analyzing field- dependent torque of the actuators on the basis of Bingham model of the ER fluid, two sets of cylindrical ER clutch and brake are manufactured. The governing equation of motion for washing and dehydrating are derived by considering actuators' dynamics. Subsequently, PID controllers are designed to achieve desired rotational motions and tracking control results are provided to demonstrate the effectiveness of the proposed method.

  • PDF

A Study on Translational Motion Control in Integrated Control System for Ship Steering Motion (선박 조종운동을 위한 통합제어시스템에서의 이동운동제어에 관한 연구)

  • Woo, Ju-Eun;Kim, Jong-Hwa
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.32-44
    • /
    • 2015
  • In general, a series of ship steering motion is represented by the combination of translational motion and rotational motion of the ship. Especially, special-functioned ships such as large-scale cruises, ships for installing underwater optical cable, and diver ships must be able to reveal only a translational motion without the change of orientation. In this paper, a method to comprise an integrated control system based on the joystick as a command instrument for translational motion control is suggested. In order to realize the translational motion control system, several algorithms are suggested including the velocity command generation, the selection of motional variables, and the generation and tracking of reference inputs for the selected motional variables. A simulation bench is composed to execute simulations for several translational motion commands. At last, the effectiveness of the proposed method is verified by analyzing the simulation results.

Effects of Head Posture on the Rotational Torque Movement of Mandible in Patients with Temporomandibular Disorders (두경부 위치에 따른 측두하악장애환자의 하악 torque 회전운동 분석)

  • Park, Hye-Sook;Choi, Jong-Hoon;Kim, Chong-Youl
    • Journal of Oral Medicine and Pain
    • /
    • v.25 no.2
    • /
    • pp.173-189
    • /
    • 2000
  • The purpose of this study was to evaluate the effect of specific head positions on the mandibular rotational torque movements in maximum mouth opening, protrusion and lateral excursion. Thirty dental students without any sign or symptom of temporomandibular disorders(TMDs) were included as a control group and 90 patients with TMDs were selected and examined by routine diagnostic procedure for TMDs including radiographs and were classified into 3 subgroups : disc displacement with reduction, disc displacement without reduction, and degenerative joint disease. Mandibular rotational torque movements were observed in four head postures: upright head posture(NHP), upward head posture(UHP), downward head posture(DHP), and forward head posture(FHP). For UHP, the head was inclined 30 degrees upward: for DHP, the head was inclined 30 degrees downward: for FHP, the head was positioned 4cm forward. These positions were adjusted with the use of cervical range-of-motion instrumentation(CROM, Performance Attainment Inc., St. Paul, U.S.A.). Mandibular rotational torque movements were monitored with the Rotate program of BioPAK system (Bioresearch Inc., WI, U.S.A.). The rotational torque movements in frontal and horizontal plane during mandibular border movement were recorded with two parameters: frontal rotational torque angle and horizontal rotational torque angle. The data obtained was analyzed by the SAS/Stat program. The obtained results were as follows : 1. The control group showed significantly larger mandibular rotational angles in UHP than those in DHP and FHP during maximum mouth opening in both frontal and horizontal planes. Disc displacement with reduction group showed significantly larger mandibular rotational angles in DHP and FHP than those in NHP during lateral excursion to the affected and non-affected sides in both frontal and horizontal planes(p<0.05). 2. Disc displacement without reduction group showed significantly larger mandibular rotational angles in FHP than those in any other head postures during maximum mouth opening as well as lateral excursion to the affected and non-affected sides in both frontal and horizontal planes. Degenerative joint disease group showed significantly larger mandibular rotational angles in FHP than those in any other head postures during maximum mouth opening, protrusion and lateral excursion in both frontal and horizontal planes(p<0.05). 3. In NHP, mandibular rotational angle of the control group was significantly larger than that of any other patient subgroups. Mandibular rotational angle of disc displacement with reduction group was significantly larger than that of disc displacement without reduction group during maximum mouth opening in the frontal plane. Mandibular rotational angle of disc displacement without reduction group was significantly larger than that of disc displacement with reduction group or degenerative joint disease group during maximum mouth opening in the horizontal plane(p<0.05). 4. In NHP, mandibular rotational angles of disc displacement without reduction group were significantly larger than those of the control group or disc displacement with reduction group during lateral excursion to the affected side in both frontal and horizontal planes. Mandibular rotational angle of disc displacement without reduction group was significantly smaller than that of the control group during lateral excursion to the non-affected side in frontal plane. Mandibular rotational angle of disc displacement without reduction group was significantly larger than that of disc displacement with reduction group during lateral excursion to the non-affected side in the horizontal plane(p<0.05). 5. In NHP, mandibular rotational angle of the control group was significantly smaller than that of disc displacement with reduction group or disc displacement without reduction group during protrusion in the frontal plane. Mandibular rotational angle of disc displacement without reduction group was significantly larger than that of the disc displacement with reduction group or degenerative joint disease group during protrusion in the horizontal plane. Mandibular rotational angle of the control group was significantly smaller than that of disc displacement without reduction group or degenerative joint disease group during protrusion in the horizontal plane(p<0.05). 6. In NHP, disc displacement without reduction group and degenerative joint disease group showed significantly larger mandibular rotational angles during lateral excursion to the affected side than during lateral excursion to the non-affected side in both frontal and horizontal planes(p<0.05). The findings indicate that changes in head posture can influence mandibular rotational torque movements. The more advanced state is a progressive stage of TMDs, the more influenced by FHP are mandibular rotational torque movements of the patients with TMDs.

  • PDF

A Method for Reducing the Effect of Disk Radial Runout for a High-Speed Optical Disk Drive (고속 광 디스크 드라이브를 위한 디스크의 편심 보상 방법)

  • Ryoo Jung Rae;Moon Jung-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.2
    • /
    • pp.101-105
    • /
    • 2006
  • Disk radial runout creates a periodic relative motion between the laser beam spot and tracks formed on an optical disk. While only focus control is activated, the periodic relative motion yields sinusoid-like waves in the tracking error signal, where one cycle of the sinusoid-like waves corresponds to one track. The frequency of the sinusoid-like waves varies depending on the disk rotational speed and the amount of the disk radial runout. If the frequency of the tracking error signal in the off-track state is too high due to large radial runout of the disk, it is not a simple matter to begin track-following control stably. It might take a long time to reach a steady state or tracking control might fail to reach a stable steady state in the worst case. This article proposes a simple method for reducing the relative motion caused by the disk radial runout in the off-track state. The relative motion in the off-track state is effectively reduced by a drive input obtained through measurements of the tracking error signal and simple calculations based on the measurements, which helps reduce the transient response time of the track-following control. The validity of the proposed method is verified through an experiment using an optical disk drive.

A Tracking Filter with Motion Compensation in Local Navigation Frame for Ship-borne 2D Surveillance Radar (2 차원 탐색 레이다를 위한 국부 항법 좌표계에서의 운동보상을 포함한 추적필터)

  • Kim, Byung-Doo;Lee, Ja-Sung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.507-512
    • /
    • 2007
  • This paper presents a tracking filter with ship's motion compensation for a ship-borne radar tracking system. The ship's maneuver is described by displacement and rotational motions in the ship-centered east-north frame. The first order Taylor series approximation of the measurement error covariance of the converted measurement is derived in the ship-centered east-north frame. The ship's maneuver is compensated by incorporating the measurement error covariance of the converted measurement and displacement of the position state in the tracking filter. The simulation results via 500 Monte-Carlo runs show that the proposed method follows the target successfully and provides consistent tracking performance during ship's maneuvers while the conventional tracking filter without ship motion compensation fails to track during such periods.

On the Estimation of the Center of Mass of an Autonomous Bipedal Robot (이족보행 로봇의 무게중심 실시간 추정에 관한 연구)

  • Kwon, Sang-Joo;Oh, Yong-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.9
    • /
    • pp.886-892
    • /
    • 2008
  • In this paper, a closed-loop observer to extract the center of mass (CoM) of a bipedal robot is suggested. Comparing with the simple conversion method of just using joint angle measurements, it enables to get more reliable estimates by fusing both joint angle measurements and F/T sensor outputs at ankle joints. First, a nonlinear-type observer is constructed to estimate the flexible rotational motion of the biped in the extended Kalman filter framework. It adopts the flexible inverted pendulum model which is appropriate to address the flexible motion of bipeds, specifically in the single support phase. The predicted estimates of CoM in terms of the flexible motion observer are combined with measurements (that is, output of the CoM conversion equation with joint angles). Then, we have final CoM estimates depending on the weighting values which penalize the flexible motion model and the CoM conversion equation. Simulation results show the effectiveness of the proposed algorithm.