• 제목/요약/키워드: Rotational Effect

검색결과 706건 처리시간 0.03초

Infrared Multiphoton Dissociation of $CHCl_2F$: Reaction Mechanisms and Product Ratio Dependence on Pressure and Laser Pulse Energy

  • Song, Nam-Woong;Lee, Won-Chul;Kim, Hyong-Ha
    • Journal of Photoscience
    • /
    • 제12권2호
    • /
    • pp.101-107
    • /
    • 2005
  • Infrared multiphoton dissociation of $CHCl_2F$ was studied using $CO_2$ laser excitation. Three products, $C_2Cl_2F_2$, $C_2ClF_3$, and $C_2HClF_2$, were identified by the analysis of the gas mixture from the photoreaction of $CHCl_2F$. The dependence of the reaction probability on added Ar gas pressure and excitation laser pulse energy was investigated. At low pressure (< 10 torr), the reaction probability increased as Ar pressure increased due to the rotational hole-filling effect, while it diminished with the increase of Ar pressure at high pressure (> > 20 torr) due to the collisional deactivation. The ratio of two products $(C_2ClF_3/C_2Cl_2F_2)$ decreased at low pressure (< 10 torr) and increased at high pressure (> 20 torr) with the increase of Ar pressure. The log-log plot of the reaction probability vs. laser pulse energy (${\\phi}$) was found to have a linear relationship, and its slope decreased as the added Ar pressure was increased. The reaction mechanisms for product formation have been suggested and validated by experimental evidences and considering the energetics. Fluorine-chlorine exchange reaction in the intermediate complex has been suggested to explain the formation of $C_2ClF_3$.

  • PDF

중증 무지외반증에서 변형 Mau 절골술을 이용한 치료 (Modified Mau Osteotomy for the Treatment of Severe Hallux Valgus)

  • 배서영;김영은
    • 대한족부족관절학회지
    • /
    • 제8권2호
    • /
    • pp.117-120
    • /
    • 2004
  • 저자에 의해 개선된 변형 Mau 절골술은 우수한 교정력과 견고한 고정이 가능하면서도 술기가 간단하고 중족골두의 상하 전위가 없고 조기 보행이 가능한 안전한 방법이라 할 수 있었다. 따라서 향후 장기 추시가 필요하긴 하지만 중족골간각이 큰 중증의 무지외반증에서 추천할만한 좋은 방법으로 사료된다.

  • PDF

폐단면리브 강성에 따른 일축압축을 받는 보강판의 국부좌굴강도 평가 (Evaluation of Local Buckling Strength of Stiffened Plates under Uni-axial Compression due to Closed-section Rib Stiffness)

  • 최병호
    • 한국산학기술학회논문지
    • /
    • 제14권2호
    • /
    • pp.949-954
    • /
    • 2013
  • 일반적으로 압축을 받는 판 구조는 종방향 보강재를 이용하여 보강된다. 이 때 보강재로서 U형 단면 리브를 사용하는 것이 보다 효과적이나, 현재 국내에서 이에 대한 명확한 설계지침이나 연구자료가 제시되지 못하고 있다. 이에, 본 연구에서는 U리브의 단면 크기 및 강성 등에 따른 보강판의 탄성좌굴강도를 살펴보고자 한다. 유한요소해석 프로그램인 ABAQUS를 이용하여 세 가지 타입의 U형 단면 리브를 적용한 해석모델을 수립하여 고유치 해석을 실시하였고, 양연지지된 판의 국부좌굴강도 이론식과 본 해석적 결과를 비교하였다. 이러한 분석 결과를 토대로 U형 단면리브에 의해 좌굴강도가 증진하는 보강 효과를 확인하였으며, 설계 파라미터에 따른 변수해석적 연구를 통해 그 영향을 분석하였다. 본 연구결과는 U리브 보강판의 적정 설계 방안을 제시하는데 기여할 수 있을 것으로 기대된다.

지지구조의 유연성을 고려한 고속 유연 폴리곤 미러 스캐너 모터의 유한 요소 불평형 응답 해석 (Finite Element Analysis of Unbalance Response of a High Speed Flexible Polygon Mirror Scanner Motor Considering the Flexibility of Supporting Structure)

  • 정경문;서찬희;김명규;장건희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.859-865
    • /
    • 2007
  • This paper presents a method to analyze the unbalance response of a high speed polygon mirror scanner motor supported by sintered bearing and flexible supporting structures by using the finite element method and the mode superposition method. The appropriate finite element equations for polygon mirror are described by rotating annular sector element using Kirchhoff plate theory and von Karman non-linear strain, and its rigid body motion is also considered. The rotating components except for the polygon mirror are modeled by Timoshenko beam element including the gyroscopic effect. The flexible supporting structures are modeled by using a 4-node tetrahedron element and 4-node shell element with rotational degrees of freedom. Finite element equations of each component of the polygon mirror scanner motor and the flexible supporting structures are consistently derived by satisfying the geometric compatibility in the internal boundary between each component. The rigid link constraints are also imposed at the interface area between sleeve and sintered bearing to describe the physical motion at this interface. A global matrix equation obtained by assembling the finite element equations of each substructure is transformed to a state-space matrix-vector equation, and both damped natural frequencies and modal damping ratios are calculated by solving the associated eigenvalue problem by using the restarted Arnoldi iteration method. Unbalance responses in time and frequency domain are performed by superposing the eigenvalues and eigenvectors from the free vibration analysis. The validity of the proposed method is verified by comparing the simulated unbalance response with the experimental results. This research also shows that the flexibility of supporting structures plays an important role in determining the unbalance response of the polygon mirror scanner motor.

  • PDF

오일공급 방향에 따른 타원형 베어링 손실 및 온도 특성 (Effect of Oil Supply Direction on Power Loss and Bearing Temperature of Elliptical Bearing)

  • 방경보;최용훈;조용주
    • Tribology and Lubricants
    • /
    • 제34권4호
    • /
    • pp.138-145
    • /
    • 2018
  • Elliptical bearings are widely used for large steam turbines owing to their excellent load carrying capacity and good dynamic stability. Power loss in bearings is an extremely important parameter, especially for high turbine capacities. Optimization of operation conditions and design variables such as bearing clearance and bearing length can reduce the power loss in elliptical bearings. Although changes in the oil supply method have served to increase the efficiency of the tilting pad journal bearing, it has not explicitly improved elliptical bearings. In this study, we verify the static characteristics of an elliptical bearing by changing the direction of oil supply. We evaluate the bearing power loss and bearing metal temperature, and compare the bearing performance and reliability in different test cases. The direction of oil supply is $90^{\circ}$ (9 o'clock) and $270^{\circ}$ (3 o'clock) when the rotor rotates in a counterclockwise direction. We use an elliptical bearing with an inner diameter and active length of 220.30 and 110.00 mm, respectively. Bearing power loss and bearing metal temperatures are measured and evaluated by rotor rotational speed, oil flow rate, and bearing load. The results reveal a 20 reduction in the power loss when the direction of oil supply is 90. Furthermore, the oil film on the upper part of the bearing has a high temperature when the direction of oil supply is $90^{\circ}$. In contrast, when the direction of oil supply is $270^{\circ}$, the oil film on the upper part of the bearing is relatively cold.

씰 투스 간극이 틸팅 패드 저어널 베어링 손실과 온도에 미치는 영향 (Effect on Seal Tooth Clearance on Power Loss and Temperature of Tilting Pad Journal Bearing)

  • 방경보;최용훈;조용주
    • Tribology and Lubricants
    • /
    • 제34권5호
    • /
    • pp.183-190
    • /
    • 2018
  • Tilting pad journal bearing is widely used for steam turbines because of its excellent dynamic stability. As the turbine capacity increases, power loss in the bearings becomes a matter of concern. Power loss in tilting pad journal bearings can be reduced by increasing the bearing clearance and reducing the pad arc length. In this study, the tilting pad journal bearing is tested by changing the seal tooth clearance to verify the static characteristics of the bearing. Bearing power loss and bearing metal temperature are evaluated to compare the bearing's performance and reliability for several test cases. The test bearing is a tilting pad journal bearing with 300.62mm inner diameter and 120.00mm active length. The bearing power loss, its metal temperature, and oil film thickness are measured and evaluated based on the rotor's rotational speed, oil flow rate, and bearing load. Test results show that a tilting pad journal bearing with large seal tooth clearance has 40% lower power loss compared with a bearing with a small seal tooth clearance. As the seal tooth clearance is increased, the power loss of the tilting pad journal bearing decreases. However, with respect to the bearing metal temperatures, a detuning point is observed that makes the minimum bearing metal temperature. Moreover, as the seal tooth clearance is increased, the oil film thickness increases due to high viscosity.

Effect of Parthenogenetic Mouse Embryonic Stem Cell (PmES) in the Mouse Model of Huntington′s Disease

  • 이창현;김용식;이영재;김은영;길광수;정길생;박세필;임진호
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2003년도 학술발표대회 발표논문초록집
    • /
    • pp.80-80
    • /
    • 2003
  • Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by motor, cognitive, and psychiatric symptoms, accompanied by marked cell death in the striatum and cortex. Stereotaxic injection of quinolinic acid (QA) into striatum results in a degeneration of GABAergic neurons and exhibits abnormal motor behaviors typical of the illness. The objective of this study was carried out to obtain basic information about whether parthenogenetic mouse embryonic stem (PmES) cells are suitable for cell replacement therapy of HD. To establish PmES cell lines, hybrid F1 (C57BL/6xCBA/N) mouse oocytes were treated with 7% ethanol for 5 min and cytochalasin-B for 4 hr to initiate spontaneous cleavage. Thus established PmES cells were induced to differentiate using bFGF (20ng/ml) followed by selection of neuronal precursor cells for 8 days in N2 medium. After selection, cells were expanded at the presence of bFGF (20 ng/ml) for another 6 days, then a final differentiation step in N2 medium for 7 days. To establish recipient animal models of HD, young adult mice (7 weeks age ICR mice) were lesioned unilaterally with a stereotaxic injection of QA (60 nM) into the striatum and the rotational behavior of the animals was tested using apomorphine (0.1mg/kg, IP) 7 days after the induction of lesion. Animals rotating more than 120 turns per hour were selected and the differentiated PmES cells (1$\times$10$^4$cells/ul) were implanted into striatum. Four weeks after the graft, immunohistochemical studies revealed the presence of cells reactive to anti-NeuN antibody. However, only a slight improvement of motor behavior was observed. By Nissl staining, cell mass resembling tumor was found at the graft site and near cortex which may explain the slight behavioral improvement. Detailed experiment on cell viability, differentiation and migration explanted in vivo is currently being studied.

  • PDF

플랩이 있는 무인기 전운동 카나드의 동적공탄성 특성 (Dynamic Aeroelastic Characteristics of an All-Movable Canard with Oscillating Flap Used in UAV)

  • 김동현;구교남;이인;김성준;김성찬;이정진;최익현
    • 한국항공우주학회지
    • /
    • 제32권6호
    • /
    • pp.56-63
    • /
    • 2004
  • 본 연구에서는 공력 압축성 효과를 고려하여 플랩이 있는 무인기 카나드에 대한 동적 공탄성 해석을 수행하였다. 고려한 해석 모델은 국내에서 개발 후보로 검토된 모델 중 하나인 CRW(Canard-Rotor-Wing) 무인기의 전운동(all-movable) 카나드이다. 초기 설계 데이터를 기반으로 하여 등가구조 날개 모델을 구성하였다. 엄밀한 공탄성 특성해석을 위해 주파수 및 시간영역 해석기법이 모두 적용되었으며, 카나드 및 플랩 연결부의 회전강성 변화에 대한 매개변수 연구를 수행하였다. 플랩이 있는 전운동 조종면의 경우 각 조종축에서의 등가회전강성은 공탄성 안정성에 중요한 설계인자이다. 본 연구를 통하여 설계 초기단계에서 동적공탄성 안정성에 미치는 영향을 파악하였으며 관련 해석결과들을 제시하였다.

Nonlinear response of stiffened triceratops under impact and non-impact waves

  • Chandrasekaran, Srinivasan;Nassery, Jamshed
    • Ocean Systems Engineering
    • /
    • 제7권3호
    • /
    • pp.179-193
    • /
    • 2017
  • Dynamic response analysis of offshore triceratops with stiffened buoyant legs under impact and non-impact waves is presented. Triceratops is relatively new-generation complaint platform being explored in the recent past for its suitability in ultra-deep waters. Buoyant legs support the deck through ball joints, which partially isolate the deck by not transferring rotation from legs to the deck. Buoyant legs are interconnected using equally spaced stiffeners, inducing more integral action in dispersing the encountered wave loads. Two typical nonlinear waves under very high sea state are used to simulate impact and non-impact waves. Parameters of JONSWAP spectrum are chosen to produce waves with high vertical and horizontal asymmetries. Impact waves are simulated by steep, front asymmetric waves while non-impact waves are simulated using Stokes nonlinear irregular waves. Based on the numerical analyses presented, it is seen that the platform experiences both steady state (springing) and transient response (ringing) of high amplitudes. Response of the deck shows significant reduction in rotational degrees-of-freedom due to isolation offered by ball joints. Weak-asymmetric waves, resulting in non-impact waves cause steady state response. Beat phenomenon is noticed in almost all degrees-of-freedom but values in sway, roll and yaw are considerably low as angle of incidence is zero degrees. Impact waves cause response in higher frequencies; bursting nature of pitch response is a clear manifestation of the effect of impact waves on buoyant legs. Non-impact waves cause response similar to that of a beating phenomenon in all active degrees-of-freedom, which otherwise would not be present under normal loading. Power spectral density plots show energy content of response for a wide bandwidth of frequencies, indicating an alarming behaviour apart from being highly nonlinear. Heave, being one of the stiff degrees-of-freedom is triggered under non-impact waves, which resulted in tether tension variation under non-impact waves as well. Reduced deck response aids functional requirements of triceratops even under impact and non-impact waves. Stiffened group of buoyant legs enable a monolithic behaviour, enhancing stiffness in vertical plane.

고속 스핀들의 동적거동과 밸런싱 해석 (Analysis of Dynamic Behavior and Balancing of High Speed Spindle)

  • 구자함;권순구;김종순
    • 한국산학기술학회논문지
    • /
    • 제18권1호
    • /
    • pp.238-244
    • /
    • 2017
  • 공작기계 응용에 있어서 고속 및 고효율 가공의 추세는 스핀들의 고속화를 지속적으로 요구하고 있다. 내장형 모터를 장착한 스핀들은 가공시스템의 구조를 단순하게 한다. 하지만 로터에는 불평형 질량에 의해 진동이 발생하며, 이를 제거하기 위한 밸런싱 작업은 필수적이다. 이 논문에서는 내장형 모터를 장착한 고속 스핀들의 동적거동을 해석하였다. 불평형 질량, 베어링 강성, 회전 속도의 변화에 따른 휘돌림 궤적을 해석하였고, 이를 저감시키는 방법을 모색하였다. 또한 Timoshenko 빔 요소를 적용하여 스핀들-베어링 시스템을 모델링하고, 영향 계수법을 적용하여 밸런싱 과정을 시뮬레이션 하였다. 스핀들의 경우, 불평형 하중이 작용할 때, 베어링 지지점에서 가장 작은 휘돌림 궤적이 나타났으며, 양단에서 가장 큰 휘돌림 궤적을 나타내었다. 스핀들의 회전속도가 증가함에 따라 스핀들 선단에서의 휘돌림 궤적도 증가하였다. 베어링의 강성이 커짐에 따라 휘돌림 궤적 또한 증가하였다. 밸런싱 전, 후의 휘돌림 궤적 반경은 최대 73%까지 감소함을 확인할 수 있었다. 이러한 연구 결과는 CNC 자동선반의 스핀들 고속화에 중요한 정보를 제공하고 있다.