• 제목/요약/키워드: Rotation time

Search Result 1,301, Processing Time 0.467 seconds

Numerical simulations of rotating star clusters with 2 mass components

  • Hong, Jong-Suk;Kim, Eun-Hyeuk;Lee, Hyung-Mok
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.56.1-56.1
    • /
    • 2011
  • To understand the effect of the initial rotation for tidally bounded clusters with mass spectrum, we performed N-body simulations for the clusters with different degrees of initial rotation and compared to Fokker-Planck results. We confirmed that the cluster evolution is accelerated by the initial rotation as well as the mass spectrum. For the slowly rotating models, the time evolution of mass, energy and angular momentum show good agreements between N-body and Fokker-Planck calculations. On the other hand, for the rapidly rotating models, there are significant differences between two approaches at the beginning of the evolution. By investigating cluster shapes, we concluded that these differences are mainly due to secular instability that takes place for very rapidly rotating clusters. The shape of cluster for N-body simulations becomes tri-axial or even prolate, while the 2-dimensional Fokker-Planck simulation can treat only oblate type axisymmetric systems. We also founded that there is the angular momentum exchange from high mass to low mass.

  • PDF

Multivariate Analysis of Joint Rotation in Okinawan Dance

  • Kiyoshi-Hoshinio
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.43-48
    • /
    • 1999
  • To clarify the motion characteristics of free-style Okinawan dance“Kachaasi”, first the subjective impression was quantitatively evaluated with semantic differential technique to cluster its types. Then, the contingency of joint rotation in shoulder, elbow and wrist joints was examined with multivariate autoregressive model. The time-series data of positions and angels of three joints were calculated according to the deforming conditions and shielding directions of the ring lights. As the results, in an excellent dancer, the motions of shoulder and elbow were highly synchronized and smoothly controlled. The low-frequency output of the shoulder and elbow were mutually interacted. Meanwhile, the wrist behaved independently of other joints' rotation.

Plane harmonic waves in fractional orthotropic magneto-thermoelastic solid with rotation and two-temperature

  • Himanshi;Parveen Lata
    • Coupled systems mechanics
    • /
    • v.12 no.2
    • /
    • pp.103-125
    • /
    • 2023
  • The present research is focused on the study of plane harmonic waves in a two-dimensional orthotropic magneto-thermoelastic media with fractional order theory of generalized thermoelasticity in the light of two-temperature and rotation due to time harmonic sources. Here, we studied three types of waves namely quasi-longitudinal (QL), quasi-transverse (QTS) and quasi thermal (QT) waves. The variations in the wave properties such as phase velocity, attenuation coefficient and specific loss have been noticed with respect to frequency for the reflected waves. Further the value of amplitude ratios, energy ratios and penetration depth are computed numerically with respect to angle of incidence. The numerical simulated results are presented graphically to show the effect of fractional parameter based on its conductivity (0<α<1 for weak, α=1 for normal, 1<α≤2 for strong conductivity) on all the components.

A Study on the Self-Propulsion CFD Analysis for a Catamaran with Asymmetrical Inside and Outside Hull Form (안팎 형상이 비대칭인 쌍동선의 자항성능 CFD 해석에 관한 연구)

  • Jonghyeon Lee;Dong-Woo Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.1
    • /
    • pp.108-117
    • /
    • 2024
  • In this study, simulations based on computational fluid dynamics were performed for self-propulsion performance prediction of a catamaran that has asymmetrical inside and outside hull form and numerous knuckle lines. In the simulations, the Moving Reference Frame (MRF) or Sliding Mesh (SDM) techniques were used, and the rotation angle of the propeller per time step was different to identify the difference using the analysis technique and condition. The propeller rotation angle used in the MRF technique was 1˚ and those used in the SDM technique were 1˚, 5˚, or 10˚. The torque of the propeller was similar in both the techniques; however, the thrust and resistance of the hull were computed lower when the SDM technique was applied than when the MRF technique was applied, and higher as the rotation angle of the propeller per time step in the SDM technique was smaller in the simulations for several revolutions of the propeller to estimate the self-propulsion condition. The revolutions, thrust, and torque of the propeller in the self-propulsion condition obtained using linear interpolation and the delivered power, wake fraction, thrust deduction factor, and revolutions of the propeller obtained using the full-scale prediction method showed the same trend for both the techniques; however, most of the self-propulsion efficiency showed the opposite trend for these techniques. The accuracy of the propeller wake was low in the simulations when the MRF technique was applied, and slight difference existed in the expression of the wake according to the rotation angle of the propeller per time step when the SDM technique was applied.

A LASER HOLOGRAPHIC STUDY ON THE INITIAL REACTION OF MAXILLOFACIAL COMPLEX TO MAXILLARY PROTRACTION (상악 전방견인시 악안면골의 초기반응에 관한 Laser Holography연구)

  • Kang, Hung Sok
    • The korean journal of orthodontics
    • /
    • v.18 no.2
    • /
    • pp.367-385
    • /
    • 1988
  • In case of skeletal Class III malocclusion with underdeveloped maxilla, the extraoral orthopedic force for the stimulation of maxillary growth or anterior reposition of the maxilla has been used clinically for the improvement of facial skeletal relationship. The purpose of this investigation was to examine the initial reaction of maxillofacial complex to the maxillary protraction by using extraoral orthopedic force. The dried human skull was used and this investigation was done by means of double exposure holographic interferometry. The protraction forces placed on the canine or the first molar were parallel, $10^{\circ}$ downward, $20^{\circ}$ downward to the occlusal plane. Fringe pattern of each protraction condition was compared and analized. The results were as follows: 1. Each maxillofacial bone displaced saparately. 2. More displacement was shown at the area of the teeth and the alveolar bone. 3. A counterclockwise rotation of the maxilla wa decreased by downward protraction and especially 20 degree downward protraction from the canine showed least rotation. 4. On the zygomatic arch, outward bend was observed and this effect was decreased by downward protraction. 5. On the zygomatic bone, the counter clockwise rotation was increased by the downward protraction. 6. When maxillary expansion was applied at the same time, outward and upward displacement with counterclockwise rotation was observed on the maxilla. 7. The lateral pterygoid plate of sphenoid bone was affected by maxillary protraction.

  • PDF

Corner Inspection of Autoclave-cured L-shaped Composite Structure using Pulse-echo Rotation Scanning Scheme based on Laser Ultrasonic (레이저 초음파 기반 반사식 회전 검사 기법을 이용한 오토클레이브 가공 L 형 복합재 구조물의 모서리 검사)

  • Lee, Young-Jun;Lee, Jung-Ryul;Hong, Sung-Jin
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.246-250
    • /
    • 2018
  • In this paper, laser ultrasonic rotation scanning method was proposed to inspect and visualize defects in corner section of curved composite structure. L-shaped composite specimen with defects in its corner section were inspected using laser ultrasonic rotation scanning method. L-shaped specimens had artificial defects at three different depths to simulate delamination damage. All artificial defects were detected clearly in different time-of-flight according to their depths. Inspection result showed that the proposed method is suitable to inspect round corner section of curved composite structure without any special tools.

Rotational effect on Rayleigh, Love and Stoneley waves in non-homogeneous fibre-reinforced anisotropic general viscoelastic media of higher order

  • Abo-Dahab, S.M.;Abd-Alla, A.M.;Khan, Aftab
    • Structural Engineering and Mechanics
    • /
    • v.58 no.1
    • /
    • pp.181-197
    • /
    • 2016
  • In this paper, we investigated the propagation of surface waves in a nonhomogeneous rotating fibre-reinforced viscoelastic anisotropic media of higher order of nth order including time rate of strain. The general surface wave speed is derived to study the effect of rotation on surface waves. Particular cases for Stoneley, Love and Rayleigh waves are discussed. The results obtained in this investigation are more general in the sense that some earlier published results are obtained from our result as special cases. Also results for homogeneous media can be deduced from this investigation. For order zero our results are well agreed to fibre-reinforced materials. Also by neglecting the reinforced elastic parameters, the results reduce to well known isotropic medium. It is also observed that, surface waves cannot propagate in a fast rotating medium. Comparison was made with the results obtained in the presence and absence of rotation and parameters for fibre-reinforced of the material medium Numerical results are given and illustrated graphically. The results indicate that the effect of rotation and parameters for fibre-reinforced of the material are very pronounced.

A Method of Pose Matching Rate Acquisition Using The Angle of Rotation of Joint (관절의 회전각을 이용한 자세 매칭률 획득 방법)

  • Hyeon, Hun-Beom;Song, Su-Ho;Lee, Hyun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.3
    • /
    • pp.183-191
    • /
    • 2016
  • Recently, in rehabilitation treatment, the situation that requires a measure of the accuracy of the pose and movement of joints is being increased due to the habits and lifestyle of modern people and the environment. In particular, there is a need for active automated system that can determine itself for the matching rate of pose Basically, a method for measuring the matching rate of pose is used by extracting an image using the Kinect or extracting a silhouette using the imaging device. However, in the case of extracting a silhouette, it is difficult to set the comparison, and in the case of using the Kinect sensor, there is a disadvantages that high accumulated error rate according to movement. Therefore, In this paper, we propose a method to reduce the accumulated error of matching rate of pose getting the rotation angle of joint by measuring the real-time amount of change of 9-axis sensor. In particular, it can be measured same conditions that unrelated of the physical condition and unaffected by the data for the back and forth movement, because of it compares the current rotation angle of the joint. Finally, we show a comparative advantage results by compared with traditional method of extracting a silhouette and a method using a Kinect sensor.

Comparison of Muscle Activity in the Contralateral Lower Extremity from the PNF Arm Pattern and Leg Pattern (PNF 팔·다리 패턴에 따른 반대측 다리의 근활성도 비교)

  • Kim, Hee-Gwon
    • PNF and Movement
    • /
    • v.15 no.2
    • /
    • pp.177-183
    • /
    • 2017
  • Purpose: This study compared and analyzed the effect of the proprioceptive neuromuscular facilitation (PNF) arm extension pattern and leg flexion pattern on the contralateral lower extremity muscles when the patterns were applied to the same subject. Methods: In the study, 35 healthy men and women who understood the PNF patterns were selected as participants. The participants completed the PNF arm extension-abduction-internal rotation pattern and leg flexion-adduction-external rotation with knee flexion pattern in the supine position. While the patients' completed each pattern, the contralateral leg muscle activity was measured to examine the irradiation effect. The maximum isometric contraction time of the muscles to be measured was kept for 5 seconds, and the mean value was obtained by repeating the pattern three times. Results: When the leg flexion-adduction-external rotation with knee flexion pattern was completed, the muscle activity in the vastus lateralis, vastus medialis, biceps femoris, tibialis anterior, and gastrocnemius of the contralateral lower extremity was significantly greater than that found in the PNF arm extension-abduction-internal rotation pattern. Conclusion: The PNF leg flexion pattern showed greater muscle activity on the contralateral lower extremity than the arm extension pattern. Thus, the PNF leg extension pattern is more effective in the activation of the muscles associated with weight-bearing activity.

Analytical investigation on moment-rotation relationship of through-tenon joints with looseness in ancient timber buildings

  • Xue, Jianyang;Qi, Liangjie;Dong, Jinshuang;Xu, Dan
    • Earthquakes and Structures
    • /
    • v.14 no.3
    • /
    • pp.241-248
    • /
    • 2018
  • To study the mechanical properties of joints in ancient timber buildings in depth, the force mechanism of the through-tenon joints was analyzed, also the theoretical formulas of the moment-rotation angles of the joints with different loosening degrees were deduced. To validate the rationality of the theoretical calculation formulas, six joint models with 1/3.2 scale ratio, including one intact joint and five loosening joints, were fabricated and tested under cyclic loading. The specimens underwent the elastic stage, the plastic stage and the destructive stage, respectively. At the same time, the moment-rotation backbone curves of the tenon joints with different looseness were obtained, and the theoretical calculation results were validated when compared with the experimental results. The results show that the rotational moment and the initial rotational stiffness of the tenon joints increase gradually with the increase of the friction coefficient. The increase of the tenon section height can effectively improve the bearing capacity of the through-tenon joints. As the friction coefficient of the wood and the insertion length of the tension increase, the embedment length goes up, whereas it decreases with the increase of section height. With the increase of the looseness, the bearing capacity of the joint is reduced gradually.