• 제목/요약/키워드: Rotation performance

검색결과 1,258건 처리시간 0.033초

보단부 회전형감쇠기를 이용한 대형구조물의 진동제어 (Vibration Control of Large Scale Structure with Beam-End Rotation Type Friction Damper)

  • 이상현;우성식;정란;조승호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.452-458
    • /
    • 2007
  • The vertical extension of a building in general remodeling process increases both gravity and seismic loads by simply adding masses to the building. In this study, a vertical extension structural module (VESM) is proposed for enhancing seismic performance of the existing buildings by utilizing the story-increased parts. The proposed VESM is composed of steel column, steel beam, and beam-end rotational damper. The steel columns are connected to the shear walls and transfer the wall rotation in out-of plane to the steel beam, and then the beam-end rotational damper dissipates the earthquake-induced energy. Numerical analysis result from a cantilever beam of which end-rotation is restricted by rotational damper indicates that the displacement, base shear, and base overturning moment of the existing structures showing cantilever behavior can be significantly reduced by using the proposed method. Also, it is observed that friction-type rotational damper is effective than viscous one.

  • PDF

원자현미경용 XY 스캐너의 아베 오차 최소화를 위한 최적 설계 및 원자 현미경의 측정 불확도 평가 (Optimal design of a flexure hinge-based XY AFM scanner for minimizing Abbe errors and the evaluation of measuring uncertainty of AFM system)

  • 김동민;이동연;권대갑
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1438-1441
    • /
    • 2005
  • To establish of standard technique of nano-length measurement in 2D plane, new AFM system has been designed. In this system, measurement uncertainty is dominantly affected by the Abbe error of XY scanning stage. No linear stage is perfectly straight; in other words, every scanning stage is subject to tilting, pitch and yaw motion. In this paper, an AFM system with minimum offset of XY sensing is designed. And XY scanning stage is designed to minimize rotation angle because Abbe errors occur through the multiply of offset and rotation angle. To minimize the rotation angle optimal design has performed by maximizing the stiffness ratio of motion direction to the parasitic motion direction of each stage. This paper describes the design scheme of full AFM system, especially about XY stage. Full range of fabricated XY scanner is $100um\times{100um}$. And tilting, pitch and yaw motion are measured by autocollimator to evaluate the performance of XY stage. Using this AFM system, 3um pitch specimen was measured. As a result, the uncertainty of total system has been evaluated.

  • PDF

POLAR EXPONENTIAL GRID와 장방형격자 영상시스템의 영상분해도 및 영상처리능력 비교 (A Comparison of System Performances Between Rectangular and Polar Exponential Grid Imaging System)

  • Jae Kwon Eem
    • 전자공학회논문지B
    • /
    • 제31B권2호
    • /
    • pp.69-79
    • /
    • 1994
  • The conventional machine vision system which has uniform rectangular grid requires tremendous amount of computation for processing and analysing an image especially in 2-D image transfermations such as scaling, rotation and 3-D reconvery problem typical in robot application environment. In this study, the imaging system with nonuiformly distributed image sensors simulating human visual system, referred to as Ploar Exponential Grid(PEG), is compared with the existing conventional uniform rectangular grid system in terms of image resolution and computational complexity. By mimicking the geometric structure of the PEG sensor cell, we obtained PEG-like images using computer simulation. With the images obtained from the simulation, image resolution of the two systems are compared and some basic image processing tasks such as image scaling and rotation are implemented based on the PEG sensor system to examine its performance. Furthermore Fourier transform of PEG image is described and implemented in image analysis point of view. Also, the range and heading-angle measurement errors usually encountered in 3-D coordinates recovery with stereo camera system are claculated based on the PEG sensor system and compared with those obtained from the uniform rectangular grid system. In fact, the PEC imaging system not only reduces the computational requirements but also has scale and rotational invariance property in Fourier spectrum. Hence the PEG system has more suitable image coordinate system for image scaling, rotation, and image recognition problem. The range and heading-angle measurement errors with PEG system are less than those of uniform rectangular rectangular grid system in practical measurement range.

  • PDF

Verification of Two Least-Squares Methods for Estimating Center of Rotation Using Optical Marker Trajectory

  • Lee, Jung Keun
    • 센서학회지
    • /
    • 제26권6호
    • /
    • pp.371-378
    • /
    • 2017
  • An accurate and robust estimation of center of rotation (CoR) using optical marker trajectory is crucial in human biomechanics. In this regard, the performances of the two prevailing least-squares methods, the Gamage and Lasenby (GL) method, and the Chang and Pollard (CP) method, are verified in this paper. While both methods are sphere-fitting approaches in closed form and require no tuning parameters, they have not been thoroughly verified by comparison of their estimation accuracies. Furthermore, while for both methods, results for stationary CoR locations are presented, cases for perturbed CoR locations have not been investigated for any of them. In this paper, the estimation performances of the GL method and CP method are investigated by varying the range of motion (RoM) and noise amount, for both stationary and perturbed CoR locations. The difference in the estimation performance according to the variation in the amount of noise and RoM was clearly shown for both methods. However, the CP method outperformed the GL method, as seen in results from both the simulated and the experimental data. Particularly, when the RoM is small, the GL method failed to estimate the appropriate CoR while the CP method reasonably maintained the accuracy. In addition, the CP method showed a considerably better predictability in CoR estimation for the perturbed CoR location data than the GL method. Accordingly, it may be concluded that the CP method is more suitable than the GL method for CoR estimation when RoM is limited and CoR location is perturbed.

두 개의 직렬 Barrel-Rotator를 이용한 QC-LDPC 복호기용 저면적 Multi-Size Circular Shifter (Low-Complexity Multi-Size Circular Shifter for QC-LDPC Decoder Based on Two Serial Barrel-Rotators)

  • 강형주
    • 한국정보통신학회논문지
    • /
    • 제19권8호
    • /
    • pp.1839-1844
    • /
    • 2015
  • Low-density parity-check(LDPC) 코드는 우수한 에러 정정 능력으로 인해 점점 많은 통신 표준에서 채택되고 있으며 그 중 구현이 용이한 quasi-cyclic LDPC(QC-LDPC)가 많이 사용되고 있다. QC-LDPC 복호기에서는 데이터들을 rotation할 수 있는 cyclic-shifter가 필요하며, 이 cyclic-shifter는 다양한 크기의 rotation을 수행할 수 있어야 한다. 이러한 cyclic-shifter를 multi-size circular shifter(MSCS)라고 부르며, 이 논문에서는 MSCS를 적은 면적으로 구현한 구조를 제안한다. 기존의 직렬로 배치된 barrel-rotator 구조에서 rotation의 성질을 이용하여 필요 없는 멀티플렉서를 가려내고 이들을 제거함으로써 저면적을 구현하였다. 실험 결과 면적을 약 12% 줄일 수 있었다.

국부적 그래디언트 방향 히스토그램을 이용한 회전에 강인한 홍채 인식 (Robust-to-rotation Iris Recognition Using Local Gradient Orientation Histogram)

  • 최창수;전병민
    • 한국통신학회논문지
    • /
    • 제34권3C호
    • /
    • pp.268-273
    • /
    • 2009
  • 홍채 인식은 홍채 패턴 정보를 이용하여 사람의 신원을 확인하는 생체 인식 기술이다. 이러한 홍채 인식 시스템에 있어 조명의 영향이나 동공의 크기, 머리의 기울어짐 등으로 인해 발생될 수 있는 홍채 패턴의 변화에 대해 무관한 특징을 추출하는 것은 중요한 과제이다. 본 논문에서는 국부적 방향 히스토그램을 이용해 조명의 변화나 홍채의 회전에 강인한 홍채인식 방법을 제안하였다. 제안된 방법은 특징 추출 및 특징 비교 시 회전에 대해 별도의 처리가 필요하지 않아 고속의 특징 추출 및 특징 비교가 가능하며 성능도 기존의 방법과 대등함을 실험을 통하여 확인하였다.

원형관로 영상을 이용한 관로주행 로봇의 자세 추정 (Robot Posture Estimation Using Circular Image of Inner-Pipe)

  • 윤지섭;강이석
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제51권6호
    • /
    • pp.258-266
    • /
    • 2002
  • This paper proposes the methodology of the image processing algorithm that estimates the pose of the inner-pipe crawling robot. The inner-pipe crawling robot is usually equipped with a lighting device and a camera on its head for monitoring and inspection purpose of defects on the pipe wall and/or the maintenance operation. The proposed methodology is using these devices without introducing the extra sensors and is based on the fact that the position and the intensity of the reflected light from the inner wall of the pipe vary with the robot posture and the camera. The proposed algorithm is divided into two parts, estimating the translation and rotation angle of the camera, followed by the actual pose estimation of the robot . Based on the fact that the vanishing point of the reflected light moves into the opposite direction from the camera rotation, the camera rotation angle can be estimated. And, based on the fact that the most bright parts of the reflected light moves into the same direction with the camera translation, the camera position most bright parts of the reflected light moves into the same direction with the camera translation, the camera position can be obtained. To investigate the performance of the algorithm, the algorithm is applied to a sewage maintenance robot.

Normalised rotation capacity for deformability evaluation of high-performance concrete beams

  • Zhou, K.J.H.;Ho, J.C.M.;Su, R.K.L.
    • Earthquakes and Structures
    • /
    • 제1권3호
    • /
    • pp.269-287
    • /
    • 2010
  • High-strength concrete (HSC) is becoming more popular in the construction of beams and columns of tall buildings because of its higher stiffness and strength-to-weight ratio. However, as HSC is more brittle than normal-strength concrete (NSC), it may adversely affect the flexural ductility and deformability of concrete members. Extended from a series of theoretical study conducted on flexural ductility of concrete beams, the authors would in this paper investigate the effects of some critical factors including the degree of reinforcement, confining pressure, concrete and steel yield strength on the flexural deformability of NSC and HSC beams. The deformability, expressed herein in terms of normalised rotation capacity defined as the product of ultimate curvature and effective depth, is investigated by a parametric study using nonlinear moment-curvature analysis. From the results, it is evident that the deformability of concrete beams increases as the degree of reinforcement decreases and/or confining pressure increases. However, the effects of concrete and steel yield strength are more complicated and dependent on other factors. Quantitative analysis of all these effects on deformability of beams has been carried out and formulas for direct deformability evaluation are developed. Lastly, the proposed formulas are compared with available test results to verify its applicability.

A SMA-based morphing flap: conceptual and advanced design

  • Ameduri, Salvatore;Concilio, Antonio;Pecora, Rosario
    • Smart Structures and Systems
    • /
    • 제16권3호
    • /
    • pp.555-577
    • /
    • 2015
  • In the work at hand, the development of a morphing flap, actuated through shape memory alloy load bearing elements, is described. Moving from aerodynamic specifications, prescribing the morphed shape enhancing the aerodynamic efficiency of the flap, a suitable actuation architecture was identified, able to affect the curvature. Each rib of the flap was split into three elastic elements, namely "cells", connected each others in serial way and providing the bending stiffness to the structure. The edges of each cell are linked to SMA elements, whose contraction induces rotation onto the cell itself with an increase of the local curvature of the flap airfoil. The cells are made of two metallic plates crossing each others to form a characteristic "X" configuration; a good flexibility and an acceptable stress concentration level was obtained non connecting the plates onto the crossing zone. After identifying the main design parameters of the structure (i.e. plates relative angle, thickness and depth, SMA length, cross section and connections to the cell) an optimization was performed, with the scope of enhancing the achievable rotation of the cell, its ability in absorbing the external aerodynamic loads and, at the same time, containing the stress level and the weight. The conceptual scheme of the architecture was then reinterpreted in view of a practical realization of the prototype. Implementation issues (SMA - cells connection and cells relative rotation to compensate the impressed inflection assuring the SMA pre-load) were considered. Through a detailed FE model the prototype morphing performance were investigated in presence of the most severe load conditions.

Cyclic behavior of extended end-plate connections with European steel shapes

  • Akgonen, Aliriza I.;Yorgun, Cavidan;Vatansever, Cuneyt
    • Steel and Composite Structures
    • /
    • 제19권5호
    • /
    • pp.1185-1201
    • /
    • 2015
  • The aim of this experimental research is to investigate the conformity of the four-bolt unstiffened moment end-plate connections consisting of European steel sections which do not meet the limitations specified for beam flange width and overall beam depth in ANSI/AISC 358-10 to the requirements of seismic application. However, the connections are satisfactory with the limitations required by Turkish Earthquake Code. For this purpose, four test specimens were designed and cyclic load was applied to three specimens while one was tested under monotonic loading to provide data for the calibration of the analytical models. The moment-rotation hysteresis loops and the failure modes for all test specimens are presented. A full three-dimensional finite element model is also developed for each test specimen for use to predict their behavior and to provide a tool for generating subsequent extensive parametric studies. The test results show that all specimens performed well in terms of rotation capacity and strength. Finite element models are found to be capable of approximating the cyclic behavior of the extended end-plate connection specimens.