• Title/Summary/Keyword: Rotating frame

Search Result 196, Processing Time 0.022 seconds

Linearity and Nonlinearity of Rotor System Analysis (로터 시스템 회전운동 선형 및 비선형성)

  • Yun, Seong-Ho;Ren, Li-Min
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.190-196
    • /
    • 2008
  • The dynamical rotor system is investigated through the derivation and formulations of the dynamic equation of the rotating system in terms of both inertial and fixed frame of the system as well as quaternion. The investigation is aimed at analyzing the dynamical rotating system precession speed. The resulting equations of motion consist of the consistent mass matrix and gyroscopic matrix. The formulation shows its features and difference between its linearity and nonlinearity.

  • PDF

Crack Modelling to Determine Concrete Contribution to Shear Resistance (콘크리트 전단 기여분 결정을 위한 균열묘사 방법)

  • 조순호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.872-877
    • /
    • 2003
  • The fixed-angle based modified compression field theory (MCFT) was developed to include the slip deformation across the crack, thereby allowing for the non-coincident directions of the principal strain and stress. To investigate the significance of crack modelling on the analysis, a series of tests on beams without transverse reinforcement was predicted by both rotating- and fixed-angle crack models within the frame of the MCFT. The results predicted by the fixed-angle MCFT were comparable to those by the rotating-angle MCFT when the initial crack angle of 45deg. and the related friction law are used.

  • PDF

A New Controller of Single Phase Active Power Filter Using Rotating Synchronous Frame d-q Transformation (회전하는 동기 좌표계 d-q 변환을 이용한 단상 능동 전력 필터의 새로운 제어기)

  • Kang, Min Gu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.271-275
    • /
    • 2014
  • A New Single Phase Active Power Filter Controller is proposed using Rotating Synchronous Frame d-q transformation. Instantaneous Active Power is calculated using d-q transformation. Average Value of Instantaneous Active Power is obtained using Low Pass Filter. Because power factor is corrected, source current is in phase with source voltage. Amplitude of source current is calculated using single phase power formula. Reference signal of compensated current of Active power filter is obtained from source current reference signal minus load current. Simulation is performed using hysteresis current controller in proposed new controller. Simulation result shows that because active power filter compensates load current, source current is in phase with source voltage and source current is sinusoidal. And Hilbert transformer is builded using all pass filter.

A Study of Pourer Quality Disturbance Compensation using dq Transformation (dq 좌표변환을 이용한 전력외란 보상 연구)

  • Lee, Kyo-Sung;Lee, Yong-Jae;Kim, Do-Hun;Kim, Yang-Mo
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.286-289
    • /
    • 2002
  • In this paper, we use the PI dual control using do transformation(dq stationary frame and dq synchronous rotating frame) for series voltage sag and swell compensation algorithm. Analysis, simulation results are presented for voltage sags and swells on a three-phase unbalanced voltage source.

  • PDF

Analysis on Particle Deposition onto a Heated Rotating Disk with Electrostatic Effect (정전효과가 있는 가열 회전원판으로의 입자침착 해석)

  • 유경훈
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.5
    • /
    • pp.424-432
    • /
    • 2002
  • Numerical analysis has been conducted to characterize deposition rates of aerosol particles onto a heated, rotating disk with electrostatic effect under the laminar flow field. The particle transport mechanisms considered were convection, Brownian diffusion, gravitational settling, thermophoresis and electrophoresis. The aerosol particles were assumed to have a Boltzmann charge distribution. The electric potential distribution needed to calculate local electric fields around the disk was calculated from the Laplace equation. The Coulomb, the image, the dielectrophoretic and the dipole-dipole forces acting on a charged particle near the conducting rotating disk were included in the analysis. The averaged particle deposition vetocities and their radial distributions on the upper surface of the disk were calculated from the particle concentration equation in a Eulerian frame of reference, along with a rotation speed of 0∼1,000rpm, a temperature difference of 0∼5K and a charged disk voltage of 0∼1000V.Finally, an approximate deposition velocity model for the rotating disk was suggested. The present numerical results showed relatively good agreement with the results of the present approximate model and the available experimental data.

Thermodynamic Design of J-T Neon Refrigeration System Utilizing Modified Roebuck Compression Device (변형 Roebuck 압축기를 이용한 J-T 네온 냉각시스템의 열역학적 설계)

  • 정제헌;정상권
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.5
    • /
    • pp.432-438
    • /
    • 2003
  • This paper describes a modified Roebuck compression device as a potential compression device of a rotating cryogenic refrigeration system in superconducting machine such as generator or motor. The conventional cryogen transfer method from stationary refrigeration system to rotating system can be eliminated by an on-board cryogenic refrigeration system that utilizes well-designed multi-stage modified Roebuck compression device. This paper shows basic thermodynamic analysis of modified Roebuck compression device and its application for compressing neon at 77 K with substantial pressure ratio when the rotor diameter is 0.8 m with rotating speed of 3600 rpm. The device does not require any moving part in rotating frame, but two separate thermal reservoirs to convert thermal energy into mechanical compression work. The high temperature thermal reservoir is atmospheric environment at 300 K and the low temperature thermal reservoir is assumed as a liquid nitrogen bath at 77 K. The concept of the compression device in this paper demonstrates its usefulness of generating high-pressure neon at 77 K for rotating J-T neon refrigeration cycle of superconducting rotor.

Analysis on Particle Deposition on a Heated Rotating Disk (가열되는 회전원판으로의 입자 침착 해석)

  • Yu, Gyeong-Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.245-252
    • /
    • 2002
  • Numerical analysis was conducted to characterize particle deposition on a horizontal rotating disk with thermophorectic effect under laminar flow field. The particle transport mechanisms considered were convection, Brownian diffusion, gravitational settling and thermophoresis. The averaged particle deposition velocities and their radial distributions for the upper surface of the disk were calculated from the particle concentration equation in a Eulerian frame of reference for rotating speeds of 0∼1000rpm and temperature differences of 0∼5K. It was observed from the numerical results that the rotation effect of disk increased the averaged deposition velocities, and enhanced the uniformity of local deposition velocities on the upper surface compared with those of the disk at rest. It was also shown that the heating of the disk with ΔT=5K decreased deposition velocity over a fairly broad range of particle sizes. Finally, an approximate deposition velocity model for the rotating disk was suggested. The comparison of the present numerical results with the results of the approximate model and the available experimental results showed relatively good agreement between them.

Design and Construction of 35 kWh Class Superconductor Flywheel Energy Storage System Main Frame (35 kWh급 초전도 플라이휠 에너지 저장 시스템 프레임 설계 및 제작)

  • Jung, S.Y.;Han, Y.H.;Park, B.J.;Han, S.C.
    • Progress in Superconductivity
    • /
    • v.13 no.1
    • /
    • pp.52-57
    • /
    • 2011
  • A superconductor flywheel energy storage system (SFES) is an electro-mechanical battery which transforms electrical energy into mechanical energy for storage, and vice versa. The 35 kWh class SFES is composed of a main frame, superconductor bearings, electro-magnetic dampers, a motor/generator, and a composite flywheel. The energy storing capacity of the SFES can be limited by the operational speed range of the system. The operational speed range is limited by many factors, especially the resonant frequency of the main frame and flywheel. In this study, a steel frame has been designed and constructed for a 35 kWh class SFES. All the main parts, their housings, and the flywheel are aligned and assembled on to the main frame. While in operation, the flywheel excites the main frame, as well as all the parts assembled to it, causing the system to vibrate at the rotating speed. If the main frame is excited at its resonant frequency, the system will resonate, which may lead to unstable levitation at the superconductor bearings and electro-magnetic dampers. The main frame for the 35 kWh class SFES has been designed and constructed to improve stiffness for the stable operation of the system within the operational speed range.

An Application of Proportional-Resonant Controller in MMC-HVDC System under Unbalanced Voltage Conditions

  • Quach, Ngoc-Thinh;Ko, Ji-Han;Kim, Dong-Wan;Kim, Eel-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1746-1752
    • /
    • 2014
  • This paper presents an application of proportional-resonant (PR) current controllers in modular multilevel converter-high voltage direct current (MMC-HVDC) system under unbalanced voltage conditions. The ac currents are transformed and controlled in the stationary reference frame (${\alpha}{\beta}$-frame). Thus, the complex analysis of the positive and negative sequence components in the synchronous rotating reference frame (dq-frame) is not necessary. With this control method, the ac currents are kept balanced and the dc-link voltage is constant under the unbalanced voltage fault conditions. The simulation results based on a detailed PSCAD/EMTDC model confirm the effectiveness of the proposed control method.

Fast Extraction of Symmetrical Components from Distorted Three-Phase Signals Based on Asynchronous-Rotational Reference Frame

  • Hao, Tianqu;Gao, Feng;Xu, Tao
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.1045-1053
    • /
    • 2019
  • A symmetrical component decomposition scheme utilizing the characteristics of the asynchronous rotational reference frame transformation is proposed in this paper for the extraction of the positive and negative sequence components of distorted three-phase grid voltages. The undesired frequency component can be removed using a specially designed series coordinate transformation and half-cycle delays, where the delay can be controlled by adjusting the frequency of the rotating reference frame. The extracted symmetrical component can then be compensated based on the applied coordinated transformation. The dynamic response of the proposed algorithm is improved when compared to that of conventional methods. The effectiveness of the proposed algorithm is verified by simulation and experimental results.