• Title/Summary/Keyword: Rotating arm test

Search Result 14, Processing Time 0.021 seconds

Computational Fluid Dynamics Analysis for Investigation of Hydrodynamic Force and Moment of a Marine Propeller in Heave Motion (전산유체역학 해석을 통한 프로펠러의 상하동요 운동 중 유체력 특성 연구)

  • Mina Kim;Dong-Hwan Kim;Jeonghwa Seo;Myoung-Soo Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.4
    • /
    • pp.236-246
    • /
    • 2024
  • The present study aims to identify the effects of the oblique inflow and vertical acceleration on a marine propeller's hydrodynamic force and moment. Computational Fluid Dynamics analysis is performed for a rotating propeller in open water conditions with heave motion after performing validation against experiment in straightforward conditions. The oblique inflow results in a linear increase of the off-axial component of the hydrodynamic force and moment rather than the axial one. Pitch and yaw moments due to the hull motion are dominated by the heave force and the moment arm of the propeller location. Additionally, the vertical acceleration leads to a linear augmentation of off-axial hydrodynamic force and moment, implying the added mass and moment of inertia. Notably, it is found that the off-axial hydrodynamic force and moment are dominated by the oblique inflow velocity rather than the acceleration.

Ground-Based Rotational SAR System for Field-Experiments (지상 운용 회전형 SAR 시험용 시스템 연구)

  • Hwang, Ji-Hwan;Kwon, Soon-Gu;Shin, Jong-Chul;Oh, Yi-Sok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.11
    • /
    • pp.1092-1100
    • /
    • 2011
  • A C-band ground-based rotational SAR system is presented in this paper. The rotaional SAR system is a test-bed for future rotational SAR systems which can be deployed in space and on a tower. The test-bed system is designed for imaging the electromagnetic scattering from earth surfaces and buried targets. This paper also presents the examination results of the generated SAR images. This rotational SAR system is basically consisted of the network-analyzer based HPS(Hongik Polarimetric Scatterometer) and a horizontally rotating arm. Several SAR images were obtained using the rotational SAR system for various target areas. To verify this system, we simulated the SAR images for the rotational SAR using the FDTD algorithm and compared between the measured and simulated SAR images. The rotational SAR system is operated at the center frequency of 5 GHz and various frequency bandwidth within 0.5~2 GHz to change the resolution of SAR images.

A numerical study on hydrodynamic maneuvering derivatives for heave-pitch coupling motion of a ray-type underwater glider

  • Lee, Sungook;Choi, Hyeung-Sik;Kim, Joon-Young;Paik, Kwang-Jun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.892-901
    • /
    • 2020
  • We used a numerical method to estimate the hydrodynamic maneuvering derivatives for the heave-pitch coupling motion of an underwater glider. It is very important to assess the hydrodynamic maneuvering characteristics of a specific hull form of an underwater glider in the initial design stages. Although model tests are the best way to obtain the derivatives, numerical methods such as the Reynolds-averaged Navier-Stokes (RANS) method are used to save time and cost. The RANS method is widely used to estimate the maneuvering performance of surface-piercing marine vehicles, such as tankers and container ships. However, it is rarely applied to evaluate the maneuvering performance of underwater vehicles such as gliders. This paper presents numerical studies for typical experiments such as static drift and Planar Motion Mechanism (PMM) to estimate the hydrodynamic maneuvering derivatives for a Ray-type Underwater Glider (RUG). A validation study was first performed on a manta-type Unmanned Undersea Vehicle (UUV), and the Computational Fluid Dynamics (CFD) results were compared with a model test that was conducted at the Circular Water Channel (CWC) in Korea Maritime and Ocean University. Two different RANS solvers were used (Star-CCM+ and OpenFOAM), and the results were compared. The RUG's derivatives with both static drift and dynamic PMM (pure heave and pure pitch) are presented.

Optimal Design System of Grillage Structure under Constraint of Natural Frequency Based on Genetic Algorithm (고유진동수 제한을 갖는 골조구조의 GA 기반 최적설계 시스템)

  • Kim, Sung Chan;Kim, Byung Joo;Kim, E Dam
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.1
    • /
    • pp.39-45
    • /
    • 2022
  • Normal strategy of structure optimization procedure has been minimum cost or weight design. Minimum weight design satisfying an allowable stress has been used for the ship and offshore structure, but minimum cost design could be used for the case of high human cost. Natural frequency analysis and forced vibration one have been used for the strength estimation of marine structures. For the case of high precision experiment facilities in marine field, the structure has normally enough margin in allowable stress aspect and sometimes needs high natural frequency of structure to obtain very high precise experiment results. It is not easy to obtain a structure design with high natural frequency, since the natural frequency depend on the stiffness to mass ratio of the structure and increase of structural stiffness ordinary accompanies the increase of mass. It is further difficult at the grillage structure design using the profiles, because the properties of profiles are not continuous but discrete, and resource of profiles are limited at the design of grillage structure. In this paper, the grillage structure design system under the constraint of high natural frequency is introduced. The design system adopted genetic algorithm to realize optimization procedure and can be used at the design of the experimental facilities of marine field such as a towing carriage, PMM, test frame, measuring frame and rotating arm.