• Title/Summary/Keyword: Rotating Structure

Search Result 441, Processing Time 0.025 seconds

Case Study on the Explosive Demolition of Steel Truss Bridge using Charge Container for Cutting Structural Steel (강재 절단용 장약용기를 이용한 철골 교량 발파해체 시공사례)

  • Park, Hoon;Suk, Chul-Gi;Noh, You-Song
    • Explosives and Blasting
    • /
    • v.36 no.1
    • /
    • pp.20-33
    • /
    • 2018
  • A locally damaged structure is a structure that cannot be reused due to having parts that have lost their structural function as a result of abnormal load across the interior or exterior of the structure. The causes of the abnormal load occurrences can be classified into natural disaster and artificial disaster. Locally damaged structures caused by this abnormal load have risk factors that may lead to the possibility of additional secondary collapses, so such structures require immediate and complete dismantling. The case presented in this study involves the application of explosive demolition to a steel truss structured bridge in the Philippines that was damaged due to construction failures and the hurricane. Although shaped charges were needed in explosive demolitions, difficulties in locally obtaining such material. So, we made a charge container to charging of emulsion explosive during the explosive demolition. The explosive demolition resulted in the vertical free fall of the mid-section of the bridge and the free fall rotating of the both end section of the bridge. The neighboring posts and bridge piers did not show signs of damages, while post-demolition fragmentation of removed parts was found to be satisfactory.

Structural and Dielectric Studies of LLDPE/O-MMT Nanocomposites

  • Zazoum, Bouchaib;David, Eric;Ngo, Anh Dung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.5
    • /
    • pp.235-240
    • /
    • 2014
  • Nanocomposites made of linear low density polyethylene (LLDPE) and organo-modified montmorillonite (O-MMT) were processed by melt compounding from a commercially available premixed LLDPE/nanoclay masterbatch, at different nanoclay loadings, by co-rotating twin-screw extruder. The morphological and dielectric properties of LLDPE/O-MMT nanocomposites were investigated to understand the structure-dielectric properties relationship in the nanocomposites. The microstructures of the materials were characterized by wide angle X-ray diffraction (WAXD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM). Initial findings by FTIR spectroscopy characterization indicated the absence of any chemical interaction between LLDPE and nanoclay during the extrusion process, while DSC showed that a 1% wt loading of nanoclay particles increased the degree of crystallinity of the nanocomposites samples. On the other hand, XRD, SEM, TEM and AFM indicated that nanoclay layers were intercalated or exfoliated in the LLDPE matrix. A correlation between the structure and dielectric properties of LLDPE/O-MMT nanocomposites was found and discussed.

Effects of Swirl Intensity and Particle Size on Dual Swirl Pulverized Coal Flames (미분탄 이중 스월화염에서 스월강도 및 석탄 입경 변화 영향 연구)

  • Choi, Minsung;Sung, Yonmo;Lee, Sangmin;Moon, Cheoreon;Choi, Gyungmin;Kim, Duckjool
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.1-4
    • /
    • 2014
  • The present work focuses on the analysis of the pulverized coal combustion aerodynamics of the dual swirl burner by the control of the swirl-modes such as the outer swirl intensity (OSI). The detailed structure of pulverized coal swirling flames with swirl-mode was studied experimentally by particle image velocimetry and local flame colors based on $OH^*$, $CH^*$, and ${C_2}^*$ radicals. For all co-swirling conditions, the internal recirculation zone (IRZ) was observed near the inner shear layer with respect to the processing vortex core structure. Furthermore, a co-rotating vortex in the outer shear layer and the exhaust tube vortex (ETV) along the central axis were observed. The intensity of $CH^*$ signal was higher with small coal particle size, conversely, the size of the distribution of the $CH^*$ signal becomes larger. Therefore, the control of the aerodynamics with changing swirl intensities may play an important role in improving both environmental and combustion performances.

  • PDF

NUMERICAL SIMULATION OF THE FLOW CHARACTERISTICS INSIDE A U-TYPE TUBE (U-자형 곡관내의 유동특성에 대한 수치해석적 연구)

  • Koh, D.H.;Kang, D.J.;Song, D.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.97-103
    • /
    • 2009
  • A numerical study of the flow characteristics inside a U-type circular tube is carried out in this paper. The numerical simulations carried out by using a Navier-Stokes code which is commercially available. Before detailed numerical simulations, validation of present numerical approach is made by comparing numerical solutions with experimental data. Numerical simulations are performed to study the effect of curvature on the flow characteristics inside a U-type tube. Numerical solutions show that a significant effect on the secondary flow structure in the cross section of the tube, especially in the curved section is shown when the curvature ratio, ratio of curvature to tube diameter, is smaller than about 3.5. As the curvature ratio decreases below 3.5, a counter rotating vortex is found below the primary vortex in the cross section of the tube. Another dramatic change of the flow structure is the formation of streamwise separation zone when the curvature ratio is decreased below 1.25.

  • PDF

Structure Elucidation of New Cochlioquinol Derivatives from Pathogenic Fungus Bipolaris cynodontis (식물 병원균 Bipolaris cynodontis로부터 분리한 새로운 Cochlioquinol 유도체의 구조 분석)

  • Lim, Chi-Hwan
    • Analytical Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.112-117
    • /
    • 1996
  • Three active compounds were isolated from the culture of a plant pathogenic fungus, Bipolaris cynodontis. The structure elucidation of these compounds was accomplished by 2D NMR techniques, such as $^1H-^1H$ and $^{13}C-^1H$ COSY, COLOC, HMBC and rotating frame NOE(ROESY). Compounds were found as derivatives of cochlioquinone and cochlioquinol that were previously isolated as phytotoxins from B. bicolor and B. cynodontis, respectively. The compounds showed phytotxicity against Italian ryegrass, one of the host plants of B. cynodontis.

  • PDF

Dynamic Analysis of Topside Module in Lifting Installation Phase

  • Lee, Jong-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.7-11
    • /
    • 2011
  • The installation phase for a topside module suggested can be divided into 9 stages, which include start, pre-lifting, lifting, lifted, rotating, positioning, lowering, mating, and end of installation. The transfer of the topside module from a transport barge to a crane vessel takes place in the first three stages, from start to lifting, while the transfer of the module onto a floating spar hull occurs in the last three stages, from lowering to the end. The coupled multi-body motions are calculated in both calm water and in irregular waves with significant wave height (1.52m), with suggested force equilibrium diagrams. The effects of the hydrodynamic interactions between the crane vessel and barge during the lifting stage have been considered. The internal forces caused by the load transfer and ballasting are derived for the lifting phases. The results of these internal forces for the calm water condition are compared with those in the irregular sea condition. Although the effect of pitch motion on the relative vertical motion between the deck of the floating structure and the topside module is significant in the lifting phases, the internal force induced pitch motion is too small to show its influence. However, the effect of the internal force on the wave-induced heave responses in the lifting phases is noticeable in the irregular sea condition because the transfer mass-induced draught changes in the floating structure are observed to have higher amplitudes than the external force induced responses.

Effect of Convex Wall Curvature on Three-Dimensional Behavior of Film Cooling Jet

  • Lee, Sang-Woo;Lee, Joon-Sik;Keon Kuk
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.9
    • /
    • pp.1121-1136
    • /
    • 2002
  • The flow characteristics of film coolant issuing into turbulent boundary layer developing on a convex surface have been investigated by means of flow visualization and three-dimensional velocity measurement. The Schlieren optical system with a spark light source was adopted to visualize the jet trajectory injected at 35° and 90° inclination angles. A five-hole directional pressure probe was used to measure three-dimensional mean velocity components at the injection angle of 35°. Flow visualization shows that at the 90° injection, the jet flow is greatly changed near the jet exit due to strong interaction with the crossflow. On the other hand, the balance between radial pressure gradient and centrifugal force plays an important role to govern the jet flow at the 35° injection. The velocity measurement shows that at a velocity ratio of 0.5, the curvature stabilizes downstream flow, which results in weakening of the bound vortex structure. However, the injectant flow is separated from the convex wall gradually, and the bound vortex maintains its structure far downstream at a velocity ratio of 1.98 with two pairs of counter rotating vortices.

Analysis of Bridges behavior Considering Pile rigidity and Soil characteristics (말뚝강성과 지반특성을 고려한 교량의 거동해석)

  • An, Zu-Og;Yoon, Young-Man
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.1 no.3 s.3
    • /
    • pp.103-110
    • /
    • 2001
  • The objective of this study is to investigate the behavior of superstructure considering several factors such as change of pile rigidity, soil characteristics, and the constraint condition of support. The results of this study are as follows: 1. Pile-rigidity computed by the rotating deformed plane method is continuously varied up to approximately 5D(D=diameter of pile) below the ground level. This result is consistent with the previous study$^{(12)}$, in which the pile deformation occurs at approximately $3{\sim}6$ times of pile diameter from the ground level. 2. For bridge structure-pile system, analytical results of internal forces and deformations show different values for modified pile rigidity and unchanged pile rigidity. 3. Detaild analysis considering modified pile rigidity is required for the long-span bridge design with structure pile system.

  • PDF

Ultrasonic ranging technique for obstacle monitoring above reactor core in prototype generation IV sodium-cooled fast reactor

  • Kim, Hoe-Woong;Joo, Young-Sang;Park, Sang-Jin;Kim, Sung-Kyun
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.776-783
    • /
    • 2020
  • As the refueling of a sodium-cooled fast reactor is conducted by rotating part of the reactor head without opening it, the monitoring of existing obstacles that can disturb the rotation of the reactor head is one of the most important issues. This paper deals with the ultrasonic ranging technique that directly monitors the existence of possible obstacles located in a lateral gap between the upper internal structure and the reactor core in a prototype generation IV sodium-cooled fast reactor (PGSFR). A 10 m long plate-type ultrasonic waveguide sensor, whose feasibility has been successfully demonstrated through preliminary tests, was employed for the ultrasonic ranging technique. The design of the sensor's wave radiating section was modified to improve the radiation performance, and the radiated field was investigated through beam profile measurements. A test facility simulating the lower part of the upper internal structure and the upper part of the reactor core with the same shapes and sizes as those in the PGSFR was newly constructed. Several under-water performance tests were then carried out at room temperature to investigate the applicability of the developed ranging technique using the plate-type ultrasonic waveguide sensor with the actual geometry of the PGSFR's internal structures.

A Study on the Flow Field Characteristics of Air Induction System for Reducing the Signal-to-Noise in the MAFS Output

  • Yoo, Seoung-Chool
    • Journal of ILASS-Korea
    • /
    • v.5 no.1
    • /
    • pp.49-57
    • /
    • 2000
  • This study presents the flow visualization results, velocity and turbulence intensity measurements made within an air filter cover and entry region of a mass air flow sensor (MAFS) which is used in an induction system of 3.8L engine. Flow structure in two air filter cover assemblies were examined. The first was a clear plastic replica of the production cover while the second was a modified clear plastic cover with a geometry configured to reduce fluctuations. High speed flow visualization and laser doppler velocimetry (LDV) systems were used to reveal and analyze the flow field characteristics encountered in the sensor design process under steady flow conditions. A 40-watt copper vapor laser was used as a light source. Its beam is focused down to a sheet of light approximately 1.5mm thick. The light scattered off the particles was recorded by a 16mm high speed rotating prism camera at 5000 frames per second. A comparison of the flow patterns and LDV measurements in the original and modified air filter covers is presented to illustrate the controlling effect of the cover design on the turbulence structure formation near the bypass and on the sensor output signal. In both axial and radial planes of the main passage it was found that the turbulence flow pattern is remarkably influenced by the air filter cover and main passage configuration.

  • PDF