• Title/Summary/Keyword: Rotating Stall

Search Result 62, Processing Time 0.024 seconds

Flow Characteristics of Wake Flow with Relation to a Tip Leakage Vortex at Different Flow Rates in an Axial Flow Fan (유량에 따른 축류홴의 익단누설와류 및 후류 특성)

  • Kim Kwang-Yong;Jang Choon-Man
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.3 s.234
    • /
    • pp.322-329
    • /
    • 2005
  • The flow characteristics in the blade passage and in the wake region of a low speed axial flow fan have been investigated by experimental analysis using a rotating hot-wire sensor for design and off-design operating conditions. The results show that the tip leakage vortex is moved upstream when flow rate is decreased, thus disturbing the formation of wake flow near the rotor tip. The tip leakage vortex interfaces with blade pressure surface, and results in high velocity fluctuation near the pressure surface. From axial velocity distributions downstream of the fan rotor, large axial velocity decay near the rotor tip is observed at near stall condition, which results in large blockage compared to that at the design condition. Although the wake flow downstream of the rotor blade is clearly measured at all operating conditions, the trough of the high velocity fluctuation due to Karmann vortex street in the wake flow is mainly observed at a higher flow condition than the design flow rate.

Surge and Rotating Speed Control for Unmanned Aircraft Turbo-jet Engine (무인 항공기 터보 제트 엔진의 서지와 회전 속도 제어)

  • Jie, Min-Seok;Hong, Gyo-Young;Lee, Kang-Woong
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.4
    • /
    • pp.319-326
    • /
    • 2006
  • In this paper, a fuzzy inference control system is proposed for a turbojet engine with fuel flow control input only. The proposed control system provides a practical fuel flow control method to prevent surge or flame out during engine acceleration or deceleration. A fuzzy logic is designed to obtain the fast acceleration and deceleration of the engine under the condition that the operating point should stay between the surge line and flame out control line. With using both engine rotating speed error and surge margin as fuzzy input variables, the desired engine rotating speed can be achieved to rapidly follow the engine control line without engine stall. Computer simulation using the MATLAB is realized to prove the proposed control performance to the turbojet engine which is linear modelized using DYGABCD program package.

  • PDF

Unsteady Swirling Flows Arising in Straight Tubes

  • Tsurusaki, Hiromu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.3
    • /
    • pp.211-220
    • /
    • 2010
  • The objective of this study is to clarify the occurrence of the high-speed mode of unsteady swirling flows in straight tubes. The unsteady flows generated in the tube were measured by means of a semiconductor-type pressure transducer and an FFT analyzer. The high-speed mode measured has rotational speed which is approximately equal to or higher than the peripheral velocity of the swirling flow. The unsteady flow is due to cell rotation in the circumferential direction of the tube. The occurrence of the high-speed mode was confirmed, and the characteristics (rotational speed, pressure amplitude, and phase) of this mode were clarified. In order to understand the measured unsteady flows, the three dimensional vortex core profiles were discussed based on the distributions of the pressure amplitude and phase.

Unsteady Flows Arising in a Mixed-Flow Vaneless Diffuser System

  • Tsurusaki, Hiromu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.1 no.1
    • /
    • pp.92-100
    • /
    • 2008
  • The main objective of this study was to clarify the origin of the unsteady flows arising in a mixed-flow vaneless diffuser system and also the effects of physical components of the system. The testing equipment consists of a straight tube, a swirl generator, and a mixed-flow vaneless diffuser. Pressure fluctuations of the flow through the tube and diffuser were measured by using a semiconductor-type pressure transducer and analyzed by an FFT analyzer. In the experiment, the velocity ratio (axial velocity/peripheral velocity) of the internal flow, and the geometric parameters of the diffuser were varied. Two kinds of unsteady flows were measured according to the combination of the components, and the origin of each unsteady flow was clarified. The fundamental frequencies of unsteady flows arose were examined by two-dimensional small perturbation analysis.

Unstable Flow in a Vaneless Diffuser of 2-Dimensional Centrifugal Compressor (2차원 원심 압축기의 깃 없는 디퓨저에서의 불안정 유동)

  • Kang, Kyung-Jun;Shin, You-Hwan;Kim, Kwang-Ho;Lee, Yoon-Pyo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.4
    • /
    • pp.5-11
    • /
    • 2011
  • This study investigated on details of flow characteristics in a vaneless diffuser of a compressor with 2-dimensional impeller at various flow rates. Experiment for a low speed compressor model in a water reservoir was performed to analyze the flow field in the vaneless diffuser and volute casing, which was done by PIV measurement. It was also focused on the periodic flow patterns occurring at low flow rate near unstable operating region of the compressor. At low flow rate condition, the flow visualization clearly shows that the flow energy from impeller is highly accumulated at the compressor exit by the blockage effect of a flow damper and consequently the reverse flow occurs in the diffuser.

Aerodynamic Characteristics of Several Airfoils for Design of Passive Pitch Control Module of 10 kW Class (10kW 급 풍력 블레이드의 수동형 피치제어 모듈의 설계를 위한 여러가지 익형의 공력 특성에 관한 연구)

  • Kang, Sang Kyun;Lee, Ji Hyun;Lee, Jang-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.6
    • /
    • pp.609-617
    • /
    • 2014
  • Even though the variable pitch control of a wind turbine blade is known as an effective component for power control over the rated wind speed, it has limited applicability to small wind turbines because of its relatively high cost on the price of small wind turbine. Instead, stall control is generally applied in the blade design without any additional cost. However, stall delay can frequently be caused by high turbulence around the turbine blade, and it can produce control failures through excessive rotational speed and overpowering the electrical generator. Therefore, a passive pitch control module should be considered, where the pitch moves with the aerodynamic forces of the blade and returns by the elastic restoring force. In this study, a method to calculate the pitch moment, torque, and thrust based on the lift and drag of the rotating blade wing was demonstrated, and several effective wing shapes were reviewed based on these forces. Their characteristics will be estimated with variable wind speed and be utilized as basic data for the design of the passive pitch control module.

A Numerical Performance Study on Rudder with Wavy Configuration at High Angles of Attack (Wavy 형상 적용에 따른 대 각도에서의 러더 성능에 대한 수치해석 연구)

  • Tae, Hyun June;Shin, Young Jin;Kim, Beom Jun;Kim, Moon-Chan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.1
    • /
    • pp.18-25
    • /
    • 2017
  • This study deals with numerically comparing performance according to rudder shape called 'Twisted rudder and Wavy twisted rudder'. In comparison with conventional rudder, rudder with wavy shape has showed a better performance at high angles of attack($30^{\circ}{\sim}40^{\circ}$) due to delaying stall. But most of study concerned with wavy shape had been performed in uniform flow condition. In order to identify the characteristics behind a rotating propeller, the present study numerically carries out an analysis of resistance and self-propulsion for KCS with twisted rudder and wavy twisted rudder. The turbulence closure model, Realizable $k-{\epsilon}$, is employed to simulate three-dimensional unsteady incompressible viscous turbulent and separation flow around the rudder. The simulation of self-propulsion analysis is performed in two step, because of finding optimization case of wavy shape. The first step presents there are little difference between twisted rudder and case of H_0.65 wavy twisted rudder in delivered power. So two kind of rudders are employed from first step to compare lift-to-drag ratio and torque at high angles of attack. Consequently, the wavy twisted rudder is presented as a possible way of delaying stall, allowing a rudder to have a better performance containing superior lift-to-drag ratio and torque than twisted rudder at high angles of attack. Also, as we indicate the flow visualization, check the quantity of separation flow around the rudder.

Acoustical Similarity for Small Cooling Fans Revisited (소형 송풍기 소음의 음향학적 상사성에 관한 연구)

  • 김용철;진성훈;이승배
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.04a
    • /
    • pp.196-201
    • /
    • 1995
  • The broadband and discrete sources of sound in small cooling fans of propeller type and centrifugal type were investigated to understand the turbulent vortex structures from many bladed fans using ANSI test plenum for small air-moving devices (AMDs). The noise measurement method uses the plenum as a test apparatus to determine the acoustic source spectral density function at each operating conditions similar to real engineering applications based on acoustic similarity laws. The characteristics of fans including the head rise vs. volumetric flow rate performance were measured using a performance test facility. The sound power spectrum is decomposed into two non-dimensional functions: an acoustic source spectral distribution function F(St,.phi.) and an acoustic system response function G(He,.phi.) where St, He, and .phi. are the Strouhal number, the Helmholtz number, and the volumetric flow rate coefficient, respectively. The autospectra of radiated noise measurements for the fan operating at several volumetric flow rates,.phi., are analyzed using acoustical similarity. The rotating stall in the small propeller fan with a bell-mouth guided is mainly due to a leading edge separation. It creates a blockage in the passage and the reduction in the flow rate. The sound power levels with respect to the rotational speeds were measured to reveal the mechanisms of stall and/or surge for different loading conditions and geometries, for example, fans installed with a impinging plate. Lee and Meecham (1993) studied the effect of the large-scale motions like impinging normally on a flat plate using Large-Eddy Simulation(LES) and Lighthill's analogy.[ASME Winter Annual Meeting 1993, 93-WA/NCA-22]. The dipole and quadrupole sources in the fans tested are shown closely related to the vortex structures involved using cross-correlations of the hot-wire and microphone signals.

  • PDF

Wind tunnel test for the 20% scaled down NREL wind turbine blade (NREL 풍력터빈 블레이드 20% 축소모델 풍동시험 결과)

  • Cho, Taehwan;Kim, Cheolwan;Kim, Yangwon;Rho, Joohyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.33.2-33.2
    • /
    • 2011
  • The 'NREL Phase VI' model with a 10.06m diameter was tested in the NASA Ames tunnel to make a reference data of the computational models. The test was conducted at the one rotational speed, blade tip speed 38m/s and the Reynolds number of the sectional airfoils in that test was around 1E6. The 1/5 scale down model of the 'NREL Phase VI' model was used in this paper to study the power characteristics in low Reynolds number region, 0.1E6 ~ 0.4E6 which is achievable range for the conventional wind tunnel facilities. The torque generated by the blade was directly measured by using the torque sensor installed in the rotating axis for a given wind speed and rotational speed. The power characteristics below the stall condition, lambda > 4, was presented in this paper. The power coefficient is very low in the condition below the Re. 0.2E6 and rapidly increases as the Re. increases. And it still increases but the variation is not so big in the condition above the Re. 0.3E6. This results shows that to study the performance of the wind turbine blade by using the scaled down model, the Re. should be larger than the 0.3E6.

  • PDF

Numerical simulation of the unsteady flowfield in complete propulsion systems

  • Ferlauto, Michele;Marsilio, Roberto
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.3
    • /
    • pp.349-362
    • /
    • 2018
  • A non-linear numerical simulation technique for predicting the unsteady performances of an airbreathing engine is developed. The study focuses on the simulation of integrated propulsion systems, where a closer coupling is needed between the airframe and the engine dynamics. In fact, the solution of the fully unsteady flow governing equations, rather than a lumped volume gas dynamics discretization, is essential for modeling the coupling between aero-servoelastic modes and engine dynamics in highly integrated propulsion systems. This consideration holds for any propulsion system when a full separation between the fluid dynamic time-scale and engine transient cannot be appreciated, as in the case of flow instabilities (e.g., rotating stall, surge, inlet unstart), or in case of sudden external perturbations (e.g., gas ingestion). Simulations of the coupling between external and internal flow are performed. The flow around the nacelle and inside the engine ducts (i.e., air intakes, nozzles) is solved by CFD computations, whereas the flow evolution through compressor and turbine bladings is simulated by actuator disks. Shaft work balance and rotor dynamics are deduced from the estimated torque on each turbine/compressor blade row.