• Title/Summary/Keyword: Rotating Pin

Search Result 51, Processing Time 0.027 seconds

Stress analysis of bucket rotating part of the compact excavator (굴삭기 버킷 회전부의 응력해석)

  • Shin, Suk-Shin;Noh, Jong-Ho;Park, Jong-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.178-182
    • /
    • 2013
  • In mining and its similar industries, compact excavators are used commonly in narrow working spaces, of which bucket must be rotated essentially. Considering of those applications, many kinds of the compact excavators have been developed, but any stress evaluation of bucket rotating part had not been attempted. In this study, using of the finite element method and Spare solver, stress analysis has been performed on the bucket rotating parts and its adjacent parts of compact excavator, with using an excavation stress model, in various directions and positions. Resultantly, it has been defined that stress of connector in the rotating part is a little higher, due to its shape, than those remained parts of which stress are shown equally as 1 MPa. Especially in the moving parts, the stress of bucket pin and rotating pinion gear has been calculated as 7.7 MPa and 40 MPa respectively.

Performance Research of Counter-rotating Tidal Stream Power Unit

  • Wei, Xuesong;Huang, Bin;Liu, Pin;Kanemoto, Toshiaki
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.2
    • /
    • pp.129-136
    • /
    • 2016
  • An experimental investigation was carried out to improve the performance of a counter-rotating type horizontal-axis tidal stream power unit. Front and rear blades were designed separately based on modified blade element momentum (BEM) theory, and their performances at different conditions of blade tip speed ratio were measured in a wind tunnel. Three different groups of blades were designed successively, and the results showed that Group3 possessed the highest power coefficient of 0.44 and was the most satisfactory model. This experiment shows that properly increasing diameter and reducing chord length will benefit the performance of the blade.

Tribological Characteristics of Soft/Hard Coating for High-Speed Rotating Machine Elements (고속회전 하는 정밀부품을 위한 연질/경질 코팅의 트라이볼로지적 특성에 관한 연구)

  • 오진규;정구현;김대은;유제환;김형채
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.393-397
    • /
    • 2003
  • Recently, rotating elements which use mechanical and electrical systems have been utilized for high speed and accuracy to increase the performance. The most important thing to get a more reliable system is to understand the friction, wear and characteristics which has an effect on various coated surfaces. In this study, the tribologicali characteristics of various soft/hard materials were investigated by using a custom-built pin-on-reciprocator tester From the experimental results, it was found that the friction coefficients of the soft material coated surfaces were lower under various normal loads due to trier self-lubricating ability and material transfer to the counter surface.

  • PDF

Mechanical Pressure Drive with Enhanced Downward Velocity Characteristics (슬라이드의 하강속도특성을 개선한 기계프레스의 구동부)

  • 구형욱;최호준;황병복
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.03b
    • /
    • pp.110-120
    • /
    • 1996
  • A crank-slider mechanism is driven by the rotating disk with are crank-pin guide to be applied to the deep drawing and cold forging presses. Load characteristics for different presses are summarized to see the basics of deep drawing of sheet metal and forging in terms of load-stroke relationship. Several types of conventional deep drawing presses are also shown to be compared with the ratating disk-types press. Kinematic performances by thearc guide driving mechanism are anlayzed in terms of load capaicty, stroke, and slide velocity characteristics, and they are compared with those by conventional driving , e.g. Niagara-typepress and so on. Kinematically better performances is shown by arc guide drive than those by conventional ones. The new driving mechanism is also proven to be one of the best for mass production press in terms of short cycle time. Possible applications of the arc guide press to deep drawing and cold forging work are in terms of kinematics and load capacity.

  • PDF

A Study on Friction stir welding Properties of Extruded Aluminum Panels for Rolling Stock (철도차량용 알루미늄 압출 패널의 마찰교반용접 특성에 관한 연구)

  • Park, Young-Bin;Goo, Byeong-Choon;Koo, Jeong-Seo
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.2053-2058
    • /
    • 2008
  • Extruded aluminium panels have been widely used for railway vehicle structures because of their light specific weight and other merit. In the past, GMAW (Gas Metal Arc Welding) and GTAW (Gas Tungsten Arc Welding) were mainly used to join aluminium panels. But recently friction stir welding (FSW) is widely used. due to its lots of advantage. In this study aluminium A6005-T6 which are used for car body structures was chosen. The influence of main parameters such as : pin rotating speed, welding speed, shoulder diameter, pin length and tilting angle on mechanical properties was examined. Optical microscope observation, micro hardness test and tensile test were carried out. Tensile strength of the stir welded plates is 74% of that of the base material.

  • PDF

Multibody modeling and Analysis on Difference of Pin-reaction Force and Vibration caused by Offset in Fixed Outer Ring Type Cycloidal Speed Reducer (다물체 모델링을 이용한 외륜 고정형 Cycloid 감속기의 Offset에 의한 핀반력 및 진동차이 분석)

  • Kim, Hong Ki;Lee, Ki Bok;Yoo, Hong Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.11
    • /
    • pp.1057-1063
    • /
    • 2012
  • A cycloid speed reducer is a type of the speed reducers. The cycloid speed reducer has a eccentric rotating motion and offset to avoid some problem of assembly, so it has a disadvantage for vibration. In this paper, a multi-body dynamic model is developed for a cycloid speed reducer and the dynamic behaviors of the reducer are investigated. The cycloid speed reducer consists of cycloidal plate gears, housing gear, input shaft, output pin and shaft, and eccentric bearings. Using a CAD program, each component of cycloid reducer is modeled based on the offset and multi-body simulations are performed using Recurdyn. As a result, the pin reaction force and the amplitude of bearing displacement are increased by the offset.

A Study on the Friction Stir Welding Properties of A6005 Extruded Aluminum Panels (알루미늄 A6005 압출 패널의 마찰교반용접 특성 연구)

  • Park, Young-Bin;Koo, Jeong-Seo;Goo, Byeong-Choon
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.4
    • /
    • pp.512-517
    • /
    • 2009
  • Extruded aluminium panels have been widely used for railway vehicle structures because -of their light specific weight and other merits. In the past, GMAW (Gas Metal Arc Welding) and GTAW (Gas Tungsten Arc Welding) were mainly used to join aluminium panels. But recently friction stir welding (FSW) is widely used due to its lots of advantage. In this study aluminium A6005 which is used for car body structures was chosen. The influences of main parameters on mechanical properties such as: pin (tool) rotating speed, pin transition speed, shoulder, diameter, pin length and tilting angle were examined. Optical microscope and scanning electron microscope (SEM) observation, micro hardness tests, and tensile tests were carried out.

Mechanical Characteristics and Microstructure on Friction Stir Welded Joints with 6061-T6 Aluminium Alloy (알루미늄합금 6061-T6의 마찰교반용접 조건에 따른 기계적특성 및 용접부 조직평가)

  • Jang, Seok-Ki;Park, Jong-Seek
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.7
    • /
    • pp.693-699
    • /
    • 2009
  • This paper shows mechanical properties and behaviors of macro- and micro-structures on friction stir welded specimen with 6061-T6 aluminum alloy plate. It apparently results in defect-free weld zone jointed at welding conditions like the traverse speed of 267mm/min, tool rotation speed of 2500rpm, pin inserted depth of 4.5mm and tilting angle of $2^{\circ}$ with tool dimensions such as tool pin diameter of 5mm, shoulder diameter of 15mm and pin length of 4.5mm. The tensile stress ${\sigma}_T=228MPa$ and the yield point ${\sigma}Y=141MPa$ are obtained at the condition of traverse speed of 267mm/min and tool rotation speed of 2500rpm. With the constant rotation speed, the higher traverse speed become, the higher tensile stress and yielding point become. Vickers hardness for welding zone profile were also presented.

Design of an Automatic Placement System for PCBs (PCB 자동 배치 시스템의 설계)

  • 장명수;이장순;황선영
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.2
    • /
    • pp.104-115
    • /
    • 1994
  • This paper presents the design of a placement sysyem integrated in PCB design system. to get an optimal component positioning from part and net list. Unplaced components are placed in initial process using modified cluster development algorithm and are swapped in improvement process using the GFDR(Generalized Force Directed Relaxation) algorithm. The result is optimized in post process by component rotating or pin/gate swapping. Experimental results shwo that the placement system produces manufacturable layouts which are optimal in terms of total routing length.

  • PDF

Mechanical Characteristics and Macro-and Micro-structures on Friction Stir Welded Joints with 5083O Al Alloys (Al 5083O합금의 마찰교반용접부의 조직과 특성평가)

  • Jang, Seok-Ki;Park, Jong-Seek
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.104-111
    • /
    • 2009
  • This paper shows the behaviors of macro- and micro-structures and mechanical properties for specimen's welding region welded by FSW. according to welding conditions with 5mm thickness aluminum 5083O alloy plate. It apparently results in defect-free weld zone in case traverse speed was changed to 32 mm/min under conditions of anti-clockwise direction and tool rotation speed such as 800 and 1250 rpm with tool's pin diameter of 5 ${\Phi}mm$ and shoulder diameter of 20 ${\Phi}mm$, pin length of 4.5 mm and tilting angle of $2^{\circ}$. The ultimate stress of ${\sigma}_T=331$ MPa and the yield point of 147 MPa are obtained at the condition of the travel speed of 32 mm/min with the tool rotation speed of 1250 rpm. There is neither voids nor cracks on bended surface of $180^{\circ}$ after bending test. The improvement of toughness after impact test was found. The lower rotating and traverse speed became, the higher were yield point, maximum stress and elongation(%) with the stresses and the elongation(%) versus the traverse speed diagram. Vickers hardness for cross section of welding zone were also presented. The typical macro-structures such as dynamically recrystallized zone, thermo-mechanically affected zone and heat affected zone and the micro-structures of the transverse cross-section were also showed. However, the author found out that the region of 6mm far away from shoulder circumference was affected by friction heat comprehensively, that is, hardness softened and that part of micro-structures were re-solid-solution or recrystallized, the author also knew that there is no mechanically deformation on heat affected zone but there are the flow of plastic deformation of $45^{\circ}$ direction on thermo-mechanically affected zone and the segregation of Al-Mg on nugget. The solid solution wt(%) of parent material as compared against of friction stir welded zone was comprehensively changed.