• Title/Summary/Keyword: Rotating Cylinder

Search Result 219, Processing Time 0.031 seconds

Analysis for Lubrication between Two Close Rotating Cylinders (근접하여 회전하는 두 원통 사이의 윤활유동해석)

  • 이승재;정호열;정재택
    • Tribology and Lubricants
    • /
    • v.17 no.5
    • /
    • pp.391-398
    • /
    • 2001
  • Two dimensional slow viscous flow around two counter-rotating equal cylinders is investigated based on Stokes'approximation. An exact formal expression of the stream function is obtained by using the bipolar cylinder coordinates and Fourier series expansion. From the stream function obtained, the streamline patterns around the cylinders are shown and the pressure distribution in the flow field is determined. By integrating the stress distributions on the cylinder, the force and the moment exerted on the cylinder are calculated. The flow rate through the gap between the two cylinders is also determined as the distance between two cylinders varies. Special attention is directed to the case of very small distance between two cylinders concerned with the lubrication theory and the minimum pressure is calculated to explain a possible cavitation.

Two-dimensional High Viscous Flow between Two Close Rotating Cylinders (근접하여 회전하는 두 원통 사이의 고 점성 윤활 유동)

  • 이승재;정재택
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.142-149
    • /
    • 2000
  • Two dimensional slow viscous flow around two counter-rotating equal cylinders is Investigated based on Stokes' approximation. An exact formal expression of the stream function is obtained by using the bipolar cylinder coordinates and Fourier series expansion. From the stream function obtained, the streamline patterns around the cylinders are shown and the pressure distribution In the flow field is determined. By Integrating the stress distribution on the cylinder, the force and the moment exerted on the cylinder are calculated. The flow rate through the gap between the two cylinders is determined as the distance between two cylinders vary. It Is also revealed that the velocity at the far field has finite non-zero value. Special attention is directed to the case of very small distances between two cylinders by way of the lubrication theory.

  • PDF

Study of geometric effects on vortex breakdown in a rotating axisymmetric circular cylinder (회전하는 축 대칭 원통형 용기에서의 기하학적 영향에 따른 와동붕괴에 관한 연구)

  • Kim Jae Won;Kim Nam Wook;Byun Sam Mon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.35-41
    • /
    • 2004
  • A numerical investigation has been made for flows in an axisymmetric circular cylinder with a rotating cone located at the bottom of the container. The axisymmetric container is completely filled with a viscous fluid. Major parameter for the present research is the vertex angle of the cone, otherwise Reynolds number of fluid and aspect ratio of the vessel is fixed. Main interest is in vortex breakdown of meridional circulation by rotation of the cone with respect to the longitudinal axis of the cylinder. The method to this problem is numerically to integrate momentum and continuity equations on a generalized body fitted grid system. The pattern of vortex breakdown is quite different from that in a right circular cylinder with flat end wall disks. Flow visualization photographs of a preceeding work are compared with the present numerical results.

  • PDF

Synthesis of Monodisperse Silica Particles using Rotating Cylinder Systems

  • Cho, Young-Sang;Shin, Cheol Hwan
    • Korean Chemical Engineering Research
    • /
    • v.54 no.6
    • /
    • pp.792-799
    • /
    • 2016
  • Monodisperse silica nanospheres were synthesized by Stober method using rotating cylinder systems with batch or continuous manner. The particle size could be controlled by adjusting the reactant compositions such as the amount of monomer, catalyst, and water in the reaction mixture. The size and monodispersity of the ceramic particles could be controlled by changing the reaction medium with different alcohols other than ethanol or changing the reaction temperature. The effect of Taylor number (Ta) on the average diameter and standard deviation of silica particles were also studied by adjusting the rotation speed of inner cylinder, and the maximum diameter of particles was observed at Ta ${\approx}3,000$.

Consideration of Spindle Immersion Depth on Determining the Viscosity of Glass Melts by Rotating Cylinder Method

  • Kim, Young-Jin;Kim, Ki-Dong;Lee, Seung-Beun;Hwang, Song-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.4
    • /
    • pp.344-347
    • /
    • 2004
  • The influence of spindle immersion depth on the determination of glass melt viscosity was examined in rotating cylinder method. The exact adjustment of spindle immersion depth into soda lime silicate standard glass melts could be peformed by self-constructed electric system. The results showed a slight dependence of viscosity value on the immersion depth change of spindle shaft. The viscosity error per unit length of spindle was 0.4%/mm under the present cylinder dimension.

Magneto-thermo-elastic response of a rotating functionally graded cylinder

  • Hosseini, Mohammad;Dini, Ali
    • Structural Engineering and Mechanics
    • /
    • v.56 no.1
    • /
    • pp.137-156
    • /
    • 2015
  • In this paper, an analytical solution of displacement, strain and stress field for rotating thick-walled cylinder made of functionally graded material subjected to the uniform external magnetic field and thermal field in plane strain state has been studied. Stress, strain and displacement field as a function of radial coordinates considering magneto-thermo-elasticity are derived analytically. According to the Maxwell electro-dynamic equations, Lorentz force in term of displacement is obtained in cylindrical coordinates. Also, symmetric temperature distribution along the thickness of hollow cylinder is obtained by solving Fourier heat transfer equation in cylindrical coordinates. Using equation of equilibrium and thermo-mechanical constitutive equations associated with Lorentz force, a second-order inhomogeneous differential equation in term of displacement is obtained and will be solved analytically. Except Poisson's ratio, other mechanical properties such as elasticity modulus, density, magnetic permeability coefficient, heat conduction coefficient and thermal expansion coefficient are assumed to vary through the thickness according to a power law. In results analysis, non-homogeneity parameter has been chosen arbitrary and inner and outer surface of cylinder are assumed to be rich metal and rich ceramic, respectively. The effect of rotation, thermal, magnetic field and non-homogeneity parameter of functionally graded material which indicates percentages of cylinder's constituents are studied on displacement, Von Mises equivalent stress and Von Mises equivalent strain fields.

Numerical Simulation on Laminar Flow past a Rotating Circular Cylinder (회전하는 원형 실린더 주위 층류유동장의 수치 시뮬레이션)

  • Park, Jong-Chun;Moon, Jin-Kook;Yoon, Hyun-Sik;Lee, Byung-Hyuk;Chun, Ho-Hwan;Suh, Sung-Bu
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.3
    • /
    • pp.1-10
    • /
    • 2005
  • The effect of rotation on the unsteady laminar flaw past a circular cylinder is numerically investigated in the present study. The numerical solutions for the 2D Navier-Stokes equation obtained, using two different numerical methods. One is an accurate spectral method and the other is a finite volume method(FVM). First, the flaw around a stationary circular cylinder is investigated to understand the basic phenomenon of flaw separation and bluff body wake. Next, the flow characteristics of the laminar flow, past a rotating circular cylinder, are investigated, using a FVM developed in this study. By the effect of rotation, it is seen that values of lift increase, while the values of mean drag decrease. Further, the criteria of angular velocity, at which the Karman vorteces disappear, is also determined.

Experimental Study on the Vortex Flow in a Concentric Annulus with a Rotating Inner Cylinder

  • Kim, Young-Ju;Hwang, Young-Kyu
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.562-570
    • /
    • 2003
  • This experimental study concerns the characteristics of vortex flow in a concentric annulus with a diameter ratio of 0.52, whose outer cylinder is stationary and inner one is rotating. Pressure losses and skin friction coefficients have been measured for fully developed flows of water and of 0.4% aqueous solution of sodium carboxymethyl cellulose (CMC), respectively, when the inner cylinder rotates at the speed of 0~600 rpm. Also, the visualization of vortex flows has been performed to observe the unstable waves. The results of present study reveal the relation of the bulk flow Reynolds number Re and Rossby number Ro with respect to the skin friction coefficients. In somehow, they show the existence of flow instability mechanism. The effect of rotation on the skin friction coefficient is significantly dependent on the flow regime. The change of skin friction coefficient corresponding to the variation of rotating speed is large for the laminar flow regime, whereas it becomes smaller as Re increases for the transitional flow regime and. then, it gradually approach to zero for the turbulent flow regime. Consequently, the critical (bulk flow) Reynolds number Re$\_$c/ decreases as the rotational speed increases. Thus, the rotation of the inner cylinder promotes the onset of transition due to the excitation of Taylor vortices.

Coherent Structures of Turbulent Wake Past a Rotating Circular Cylinder with a Tripping Wire (Tripping wire가 부착된 회전원주에 의한 난류휴류의 응집구조)

  • 부정숙;이종춘
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.1927-1939
    • /
    • 1995
  • An experimental investigation is conducted to find out the large scale coherent structures in the intermediate wake past a rotating cylinder with a single tripping wire attached. Relation between the vortex shedding frequency and the spin rate of rotating cylinder and the effects of the tripping wire on the flow characteristics were studied by using spectral analysis and conditional phase average technique, respectively. It is found that the vortex shedding frequency is bound to a certain range and varies regularly as spin rate increases. The coherent structures are compared with those of the plain rotating cylinder in the case of spin rate of 1.0. Distance between the upper and lower center of vortices increase and the vortex shedding time is delayed, the velocity fluctuation energy decreases near the center line of vortices and it spreads out to the outer region. The Reynolds shear stress increases highly in the upper region and the turbulent wake width expands with strong entrainment process.

Effect of cylinder aspect ratio on wake structure behind a finite circular cylinder located in an atmospheric boundary layer (대기경계층 내에 놓인 자유단 원주의 형상비가 후류유동에 미치는 영향에 관한 연구)

  • Park, Cheol-Woo;Lee, Sang-Joon
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.247-252
    • /
    • 2001
  • The flow around free end of a finite circular cylinder(FC) embedded in an atmospheric boundary layer has been investigated experimentally. The experiments were carried out in a closed-return type subsonic wind tunnel with varying aspect ratio of the finite cylinder mounted vertically on a flat plate. The wake structures behind a 2-D cylinder and a finite cylinder located in a uniform flow were also measured for comparison. Reynolds number based on the cylinder diameter was about Re=20,000. A hot-wire anemometer was employed to measure the wake velocity and the mean pressure distributions on the cylinder surface were also measured. The flow past the FC free end shows a complicated three-dimensional wake structure and flow phenomenon is quite different from that of 2-D cylinder. The three-dimensional flow structure was attributed to the downwashing counter rotating vortices separated from the FC free end. As the FC aspect ratio decreases, the vortex shedding frequency is decreased and the vortex formation length is increased compared to that of 2-D cylinder. Due to the descending counter-rotating twin-vortex, in the region near the FC free end, regular vortex shedding from the cylinder is suppressed and the vortex formation region is hardly established. In the wake center region, the mean velocity for the FC located in atmospheric boundary layer has large velocity deficit, compared to that of uniform flow.

  • PDF