• Title/Summary/Keyword: Rotating Blade's Effect

Search Result 28, Processing Time 0.027 seconds

Wind tunnel effect analysis for MEXICO wind turbine model (MEXNEXT 풍력발전기 풍동 시험에 대한 풍동 영향 분석)

  • Shin, Hyungki;Lim, Jongsoo;Jang, Moonseok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.59.1-59.1
    • /
    • 2011
  • In this research, CFD calculation was implemented to analyze wind tunnel effect or rotor experiment in wind tunnel. One case included model wind turbine and all wind tunnel geometries. The other case include only rotor and nacelle system. Star-CCM+ was used for CFD analysis and rigid body motion around rotor area was applied to simulate rotating rotor. As for turbulence model, K-omega SST was used. The results were compared in 15m/s inflow condition. These results shows a good agreement with the measurement. Then, the result without wind tunnel was slightly different to the result with wind tunnel. Thus, in the case of Mexnex wind tunnel measurement, the wind tunnel don't affect the measurement result. Then, this wind tunnel and rotor size ratio can be reference for wind tunnel experiment of wind turbine rotor.

  • PDF

An Experimental Study on Wake Flow-Field of NREL 5 MW Wind Turbine Model (NREL 5 MW 풍력터빈 모형의 후류 유동장에 대한 실험적 연구)

  • Kang, Seung-Hee;Ryu, Ki-Wahn
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.2
    • /
    • pp.85-91
    • /
    • 2017
  • A wind tunnel test for 1/86 scaled down model of the NREL 5 MW offshore wind turbine was conducted to investigate the wake and flow fields. Deficit of flow speed in the wake region and variations of the turbulence intensity were measured using a hot wire anemometer at rated tip speed ratio of 11.4 m/s and a rotational speed of 1,045 rpm. According to the test results, velocity deficits along both of lateral and vertical directions were recovered within 2 rotor radii downstream from the rotating disc plane. The tip vortices effect was negligible after 5 rotor radii downstream from the rotating plane. Turbulence intensities showed maximum value around the blade tip, and decreased rapidly after one radius apart from the rotating plane, and those values were preserved until 6 rotor radii downstream.

Acoustic Analysis of Axial Fan using BEM based on Kirchhoff Surface (Kirchhoff Surface를 이용한 Fan 소음 해석)

  • Park Y.-M.;Lee S.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.763-766
    • /
    • 2002
  • A BEM is highly efficient method in the sense of economic computation. However, boundary integration is not easy for the complex and moving surface e.g. in a rotating blade. Thus, Kirchhoff surface is designed in an effort to overcome the difficulty resulting from complex boundary conditions. A Kirchhoff surface is a fictitious surface which envelopes acoustic sources of main concern. Acoustic sources may be distributed on each Kirchhoff surface element depending on its acoustic characteristics. In this study, an axial fan is assumed to have loading noise as a dominant source. Dipole sources can be computed based on the FW-H equation. Acoustic field is then computed by changing Kirchhoff surface on which near-field is implemented, to analyze the effect of Kirchhoff surface on it.

  • PDF

Numericla Study on the Aerodynamic Performances of the Turbo Blower Using Fluid-Structure Interaction Method (유체 구조 연계 해석기법을 적용한 터보블로워 공력성능 해석에 관한 수치적 연구)

  • Park, T.G.;Chung, H.T.;Kim, H.B.;Park, J.Y.
    • Journal of Power System Engineering
    • /
    • v.15 no.6
    • /
    • pp.35-40
    • /
    • 2011
  • The present study aims at investigating the effect of the fluid-structure interaction on the aerodynamic performances in the turbo blower. The design specifications of the reference model driven by 400kW power were given as 7.43kg/s of mass flow rate, 1.66 of pressure ratio with 12000rpm of impeller rotating speed. Numerical simulation has been performed on the three cases based on the tip clearance between the impeller blade and the shroud. The CFX-turbo for flow fields and ANSYS-mechanical for structure domain were applied to solve the present FSI problems inside the turbo blower. Through the numerical results, the performances corrected by the FSI effects were proposed for the more reliable predictions.

Prediction of Frequency Modulation of Discrete Noise for Random Pitch Cross-Flow Fans by Unsteady Viscous Flow Computations (비정상 점성 유동 해석에 의한 부등피치 횡류홴의 이산소음 주파수 변조 특성 예측)

  • Yong Cho;Young J. Moon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.366.2-366
    • /
    • 2002
  • Unsteady flow characteristics and associated blade tonal noise of a cross-flow fan are predicted by a computational method. The incompressible Wavier-Stokes equations are time-accurately solved for obtaining the pressure fluctuations between the rotating blades and the stabilizer, and sound pressure is predicted using Curie's equation. The computed fan performance is favorably compared with experimental data, and also indicates that the performance is not significantly altered by the random pitch effect at ø〉0.4. (omitted)

  • PDF

Design of Low Noise Airfoil for Use on Small Wind Turbines (소형 풍력발전기 소음 저감을 위한 익형 설계 연구)

  • Kim, Tae-Hyung;Lee, Seung-Min;Kim, Ho-Geon;Lee, Soo-Gab
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.465-465
    • /
    • 2009
  • Wind power is one of the most reliable renewable energy sources and the installed wind turbine capacities are increasing radically every year. Although wind power has been favored by the public in general, the problem with the impact of wind turbine noise on people living in the vicinity of the turbines has been increased. Low noise wind turbine design is becoming more important as noise is spreading more adverse effect of wind turbine to public. This paper demonstrates the design of 10 kW class wind turbines, each of three blades, a rotor diameter 6.4m, a rated rotating speed 200 rpm and a rated wind speed 10 m/s. The optimized airfoil is dedicated for the 75% spanwise position because the dominant source of a wind turbine blade has been known as trailing edge noise from the outer 25% of the blade. Numerical computations are performed for incompressible flow and for Mach number at 0.145 and for Reynolds numbers at $1.02{\times}10^6$ with a lift performance, which is resistant to surface contamination and turbulence intensity. The objective in the low design process is to reduce noise emission, while sustaining high aerodynamic efficiency. Dominant broadband noise sources are predicted by semi-empirical formulas composed of the groundwork by Brooks et al. and Lowson associated with typical wind turbine operation conditions. During the airfoil redesign process, the aerodynamic performance is analyzed to minimize the wind turbine power loss. The results obtained from the design process show that the design method is capable of designing airfoils with reduced noise using a commercial 10 kW class wind turbine blade airfoil as a basis. The new optimized airfoil clearly indicates reduction of total SPL about 3 dB and higher aerodynamic performance.

  • PDF

Rotor Hub Vibration Reduction Analysis Applying Individual Blade Control (개별 블레이드 조종을 통한 로터 허브 진동 저감 해석)

  • Kim, Taejoo;Wie, Seong-Yong;Kim, Minwoo;Lee, Dong-geon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.8
    • /
    • pp.649-660
    • /
    • 2021
  • Through analytical method based on S-76 model, the level of rotor hub vibration reduction was analyzed according to higher harmonic actuating by individual blade control. The higher harmonic actuating method for individual blades was divided into a method of generating an additional actuating force from the pitch-link in the rotating part and generating actuating force through the active trailing edge flap control of the blade. In the 100kts forward flight conditions, the hub load analysis was performed by changing the phase angle of 15 degree for the 2P/3P/4P/5P harmonic actuation for individual blades. Through the harmonic actuation results, the sensitivity of the rotor system according to the actuating conditions was analyzed, and the T-matrix representing the characteristics of the rotor system was derived based on this analysis result. And through this T-matrix, optimal higher harmonic actuating condition was derived to minimize hub vibration level for flight condition. In addition, the effect on the performance of the rotor system and the pitch-link load under minimum hub vibration condition, as well as the noise influence through the noise analysis were confirmed.

Suggestion and Verification of Architecture for Collecting Fine Dust using Drone (미세먼지 수집 드론의 구조 제안 및 검증)

  • Jo, Young-Jun;Jang, Min-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.1
    • /
    • pp.125-132
    • /
    • 2020
  • Due to the rapidly increasing number of cars and power generation, environmental pollution caused by fine dust is becoming a serious social problem. Especially fine dust becomes an important issue nowadays. More than 50 countries are suffering from fine dust above the recommended level, and each affected country is studying the measures to reduce fine dust and minimize its occurrence. However, at present, it is difficult to collect fine dust data from the various points with fixed fine dust acquisition drones, and also to collect accurate data due to the influence of rotating blades even in the existing drone method. In this paper, we propose a method for collecting fine dust using drones and a sensing parts architecture and show its effectiveness.