• Title/Summary/Keyword: Rotating Beam

Search Result 311, Processing Time 0.024 seconds

Wave dispersion analysis of rotating heterogeneous nanobeams in thermal environment

  • Ebrahimi, Farzad;Haghi, Parisa
    • Advances in nano research
    • /
    • v.6 no.1
    • /
    • pp.21-37
    • /
    • 2018
  • In the present article, wave dispersion behavior of a temperature-dependent functionally graded (FG) nanobeam undergoing rotation subjected to thermal loading is investigated according to nonlocal strain gradient theory, in which the stress numerates for both nonlocal stress field and the strain gradient stress field. The small size effects are taken into account by using the nonlocal strain gradient theory which contains two scale parameters. Mori-Tanaka distribution model is considered to express the gradually variation of material properties across the thickness. The governing equations are derived as a function of axial force due to centrifugal stiffening and displacements by applying Hamilton's principle according to Euler-Bernoulli beam theory. By applying an analytical solution, the dispersion relations of rotating FG nanobeam are obtained by solving an eigenvalue problem. Obviously, numerical results indicate that various parameters such as angular velocity, gradient index, temperature change, wave number and nonlocality parameter have significant influences on the wave characteristics of rotating FG nanobeams. Hence, the results of this research can provide useful information for the next generation studies and accurate deigns of nanomachines including nanoscale molecular bearings and nanogears, etc.

Nonlinear Finite Element Analysis of Reinforced Concrete Planar Members Using Rotating Orthotropic Axes Model (이방향성 회전 직교축 모델을 이용한 철근콘크리트 면부재의 비선형 유한요소해석)

  • 박홍근
    • Computational Structural Engineering
    • /
    • v.8 no.4
    • /
    • pp.117-127
    • /
    • 1995
  • The objective of this research is to investigate the effectiveness of rotating orthotropic axes model in analyzing reinforced concrete planar members under cyclic as well as monotonic loading. The structural members to be addressed are moderately reinforced beams, columns, beam-column joints, and shear walls, whose failure occurs due to compressive crushing after extensive crack propagation, The rotating orthotropic axes model which is usually used for monotonic loading is developed for cyclic loading. With the existing cyclic material models of reinforcing steel and bond-slip, this material model is used for the finite element analysis. For monotonic loading, the analytical results of the rotating orthotropic axes model are compared with reinforced concrete beams which have brittle failure. For Shear wall members under cyclic loading, the analyses are compared with the experiments for the ultimate load capacity, nonlinear deformation, and pinching effect due to crack opening and closing.

  • PDF

Dynamic Behavior of Rotating Cantilever Pipe Conveying Fluid with Moving Mass (이동질량을 가진 유체유동 회전 외팔 파이프의 동특성)

  • Yoon, Han-Ik;Son, In-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.5 s.98
    • /
    • pp.586-594
    • /
    • 2005
  • In this paper, we studied about the effects of the rotating cantilever pipe conveying fluid with a moving mass. The influences of a rotating angular velocity, the velocity of fluid flow and moving mass on the dynamic behavior of a cantilever pipe have been studied by the numerical method. The equation of motion is derived by using the Lagrange's equation. The cantilever pipe is modeled by the Euler-Bernoulli beam theory. When the velocity of a moving mass is constant, the lateral tip-displacement of a cantilever pipe is proportional to the moving mass and the angular velocity. In the steady state, the lateral tip-displacement of a cantilever pipe is more sensitive to the velocity of fluid than the angular velocity, and the axial deflection of a cantilever pipe is more sensitive to the effect of a angular velocity. Totally, as the moving mass is increased, the frequency of a cantilever pipe is decreased in steady state.

Vibration and Stability Control of Rotating Composite Shafts via Collocated Piezoelectic Sensing and Actuation (압전감지기 및 압전작동기를 이용한 복합재료 회전축의 진동 및 안전성 제어)

  • Jeong, Nam-Heui;Kang, Ho-Shik;Yoon, Il-Sung;Song, Oh-Seop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.2 s.257
    • /
    • pp.152-159
    • /
    • 2007
  • A study on the control of free vibration and stability characteristics of rotating hollow circular shafts subjected to compressive axial forces is presented in this paper. Both passive structural tailoring technique and active control scheme via collocated piezoelectric sensing and actuation are used in the study Gyroscopic and centrifugal forces combined with the compressive axial force contribute to the occurrence of divergence and flutter instabilities of the rotating shaft. The dual methodology based on the passive and active control schemes shows a high degree of efficiency toward postponement of these instabilities and expansion of the domain of stability of the system. The structural model of the shaft is based on an advanced thin-walled beam structure that includes the non-classical effects of transverse shear, anisotropy of constituent materials and rotatory inertia.

Wide Beam Optical System for the Laser Materials Processing (레이저 재료 가공을 위한 광폭빔 광학 장치)

  • 김재도;조응산;전병철
    • Laser Solutions
    • /
    • v.1 no.1
    • /
    • pp.24-29
    • /
    • 1998
  • A new wide laser beam optical system for the laser materials processing has been developed with a polygonal mirror. It consists of polygonal mirror and cooling part that prevents the surface of rotating polygonal mirror from damage by heat. The polygonal minors have been designed and made as 24 and 30 facets in pyramid type. This system provides a uniform linear laser heat source with the surface scanning width from 15 to 50mm according to the scanning height To examine the wide laser beam, He-Ne laser is used. Also, Acryl is used to confirm the laser beam pattern by bum-pattern print To analyze the energy distribution of the wide laser ben empirical values and theoretical values are compared and discussed. To improve the efficiency of the wide laser beam optical system, methods are suggested by the optical theories. For larger area processing like turbine blade, drawing blade, cold roller and guide plate, optimal overlapping locations have been calculated and analyzed by geometric and optical theories.

  • PDF

The Effects of the Drive-in Process Parameters on the Residual Stress Profile of the $p^+$ Silicon Thin Film (후확산 공정 조건이 $p^+$ 실리콘 박막의 잔류 응력 분포에 미치는 영향)

  • Jeong, Ok-Chan;Park, Tae-Gyu;Yang, Sang-Sik
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.9
    • /
    • pp.665-671
    • /
    • 1999
  • The paper represents the effects of the drive-in process parameters on the residual stress profile of the $p^+$ silicon film. Since the residual stress profile is notuniform along the direction normal to the surface, the residual stress is assumed to be a polynomial function of the depth. All the coefficients of the polynomial can be determined by measuring of the thicknesses and the deflections of cantilevers and the deflection of a rotating beam with a surface profiler meter and a microscope. As the drive-in temperature or the drive-in time increases, the boron concentration decreases and the magnitude of the average residual tensile stress decreases. Then, near the surface of the $p^+$ film the residual tensile stress is transformed into the residual compressive stress and its magnitude increases.

  • PDF

Design of muon production target system for the RAON μSR facility in Korea

  • Jeong, Jae Young;Kim, Jae Chang;Kim, Yonghyun;Pak, Kihong;Kim, Kyungmin;Park, Junesic;Son, Jaebum;Kim, Yong Kyun;Lee, Wonjun;Lee, Ju Hahn
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2909-2917
    • /
    • 2021
  • Following the launch of Rare Isotope Science Project in December 2011, a heavy ion accelerator complex in South Korea, named RAON, has since been designed. It includes a muon facility for muon spin rotation, relaxation, and resonance. The facility will be provided with 600 MeV and 100 kW (one-fourth of the maximum power) proton beam. In this study, the graphite target in RAON was designed to have a rotating disk shape and was cooled by radiative heat transfer. This cool-down process has the following advantages: a low-temperature gradient in the target and the absence of a liquid coolant cooling system. Monte Carlo simulations and ANSYS calculations were performed to optimize the target system in a thermally stable condition when the 100 kW proton beam collided with the target. A comparison between the simulation and experimental data was also included in the design process to obtain reliable results. The final design of the target system will be completed within 2020, and its manufacturing is in progress. The manufactured target system will be installed at the RAON in the Sindong area near Daejeon-city in 2021 to carry out verification experiments.

Thermal stability analysis of interferometric snapshot spectro-polarimeter (간섭기반 스냅샷 분광편광위상측정의 열 안정성 분석)

  • Choi, Inho;Dembele, Vamara;Paul, Madhan Jayakumar;Choi, Sukhyun;Kim, Junho;Baek, Byung-Joon;Kim, Daesuk
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.3
    • /
    • pp.70-74
    • /
    • 2018
  • In typical spectroscopic ellipsometry, the optical and geometrical properties of thin film and nano pattern can be obtained by measuring the polarization state of light reflected/transmitted from the object by rotating a analyzer or a compensator. We proposed a snapshot spectroscopic ellipsometric system based on a modified Michelson interferometer to overcome the time-consuring measurement principle due to rotating part. The proposed system provides spectral ellipsometric parameters (psi, delta) in real time by using a single spectral interference signal generated in the interferometric polarization module. However, it has a long-term stability problem resulting in delta(k) drift. In this paper, it is experimentally proved that the drift problem is caused by anisotropic refractive index change of the beam intersection layer in beam splitter of interferometer.

Adaptive Fast Calibration Method for Active Phased Array Antennas using PPO Algorithm (PPO 알고리즘을 이용한 능동위상배열안테나 적응형 고속 보정 방법)

  • Sunge Lee;Kisik Byun;Hong-Jib, Yoon
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.636-643
    • /
    • 2023
  • In this paper, a high-speed calibration method for phased array antennas in the far-field is presented A max calibration, which is a simplification of the rotating-element electric-field vector (REV) method that calibrates each antenna element only through received power, and a method of grouping calibrations by sub-array unit rather than each antenna element were proposed. Using the Proximal Policy Optimization (PPO) algorithm, we found a partitioning optimized for the distribution of phased array antennas and calibrated it on a subarray basis. An adaptive max calibration method that allows faster calibration than the conventional method was proposed and verified through simulation. Not only is the gain of the phased array antenna higher while calibration is being made to the target, but the beam pattern is closer to the ideal beam pattern than the conventional method.