• Title/Summary/Keyword: Rotary system

Search Result 748, Processing Time 0.029 seconds

Root canal volume change and transportation by Vortex Blue, ProTaper Next, and ProTaper Universal in curved root canals

  • Park, Hyun-Jin;Seo, Min-Seock;Moon, Young-Mi
    • Restorative Dentistry and Endodontics
    • /
    • v.43 no.1
    • /
    • pp.3.1-3.10
    • /
    • 2018
  • Objectives: The aim of this study was to compare root canal volume change and canal transportation by Vortex Blue (VB; Dentsply Tulsa Dental Specialties), ProTaper Next (PTN; Dentsply Maillefer), and ProTaper Universal (PTU; Dentsply Maillefer) nickel-titanium rotary files in curved root canals. Materials and Methods: Thirty canals with $20^{\circ}-45^{\circ}$ of curvature from extracted human molars were used. Root canal instrumentation was performed with VB, PTN, and PTU files up to #30.06, X3, and F3, respectively. Changes in root canal volume before and after the instrumentation, and the amount and direction of canal transportation at 1, 3, and 5 mm from the root apex were measured by using micro-computed tomography. Data of canal volume change were statistically analyzed using one-way analysis of variance and Tukey test, while data of amount and direction of transportation were analyzed using Kruskal-Wallis and Mann-Whitney U test. Results: There were no significant differences among 3 groups in terms of canal volume change (p > 0.05). For the amount of transportation, PTN showed significantly less transportation than PTU at 3 mm level (p = 0.005). VB files showed no significant difference in canal transportation at all 3 levels with either PTN or PTU files. Also, VB files showed unique inward transportation tendency in the apical area. Conclusions: Other than PTN produced less amount of transportation than PTU at 3 mm level, all 3 file systems showed similar level of canal volume change and transportation, and VB file system could prepare the curved canals without significant shaping errors.

A High Voltage Poorer Supply for Electrostatic Precipitator with Superimposing Voltage Pulse on DC Source (펄스 및 직류 중첩형 전기집진기용 고전압 전원장치 개발 연구)

  • Kim, Jong-Soo;Rim, Geun-Hie;Lee, Sung-Jin;Kim, Seung-Min;Cho, Chang-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.12
    • /
    • pp.624-630
    • /
    • 2001
  • The trend of the regulations on environmental issues are getting tight. Responding to this trend new technologies such as moving electrodes, wide pitch and pulsed power supply are also introduced in the electrostatic precipitator(EP) systems. The introduction of wide pitch and moving electrodes enhances the system performance of the EPs by improving air-flow and by improving the ash reentrainment on rapping. The power supplies for the EPs developed up to date include thyristor-based dc or intermittent type, SMPS(switching mode power supply) type and the pulsed-power supply type. The use of the pulsed ones is known to improve dust-collecting efficiency of high resistivity ash and reduces back corona occurrence in the collecting plate. There are two kinds of pulsed-power supplies; one with pulsed transformers and the other with direct dc switching devices. The latter uses rotary spark gap switches or semiconductor switches. Both have the merits and demerits: the spark gap switches are simple and robust but has short life time, hence, high maintenance cost, whereas the semiconductor switches have long life time but are costly. In this study, A high voltage power supply with superimposing voltage pulse on dc source was developed for EPs. This study describes circuit topology, operating principle of the scheme, and analysis of experimental results on Dong-Hae Power Plant. The pulsed power supply consists of a variable dc power supply with ratings of 60kV, 800mA and pulse generator which is made of high voltage thyristor-diode switch strings, an LC resonant tank and a blocking inductor. The pulse generator generates variable pulse-voltage up to 70kV using a high frequency resonant inverter with a variable dc source. Two prototypes were built and tested on 250MW DongHae power plant to verify the possibility of the commercial use and the normal operation in the transient states.

  • PDF

On-site Demonstration of Topographic Surveying Techniques at Open-pit Mines using a Fixed-wing Unmanned Aerial Vehicle (Drone) (고정익 무인항공기(드론)를 이용한 노천광산 지형측량 기술의 현장실증)

  • Lee, Sungjae;Choi, Yosoon
    • Tunnel and Underground Space
    • /
    • v.25 no.6
    • /
    • pp.527-533
    • /
    • 2015
  • This study performed an on-site demonstration of the topographic surveying technique at a large-scale open-pit limestone mine in Korea using a fixed-wing unmanned aerial vehicle (UAV, Drone, SenseFly eBee). 288 sheets of aerial photos were taken by an automatic flight for 30 minutes under conditions of 300 m altitude and 12 m/s speed. Except for 37 aerial photos in which no keypoint was detected, 251 aerial photos were utilized for data processing including correction and matching, then an orthomosaic image and digital surface model with 7 cm grid spacing could be generated. A comparison of the X, Y, Z-coordinates of 4 ground control points measured by differential global positioning system and those determined by fixed-wing UAV photogrammetry revealed that the root mean squared errors were around 15 cm. Because the fixed-wing UAV has relatively longer flight time and larger coverage area than rotary-wing UAVs, it can be effectively utilized in large-scale open-pit mines as a topographic surveying tool.

True Rolling Technique of New Gravure-Offset Printing for R2R Over-Piling (R2R 중첩인쇄를 위한 그라비어오프셋인쇄의 투루롤링 기술)

  • Choi, Byung-Oh;Jo, Jeong-Dai;Kim, Dong-Soo;Lim, Kyu-Jin;Ryu, Byung-Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.10
    • /
    • pp.1131-1140
    • /
    • 2011
  • A new rotary gravure-offset printing unit is constructed by paralleling a gravure plate cylinder, a blanket cylinder and a impression roller. A Muti-Unit Gravure-Offset Printing Press(MUGOP) equipped with a series of the 3 printing units is utilized for roll-to-roll fine printing. Its core technology is precise over-piling printing of fine patterns. The severe problems of 'slurring' and 'doubling' in typical offset printing are unavoidable, which can be eliminated by applying a soft pad-type blanket cylinder and the unique 'true rolling' technique. Nip pressure between the blanket cylinder and the plate cylinder is measured by the constant pressure control system which equipped with load cells attached on the cylinders' axes. The running circumference of the blanket cylinder is increased to reach the same circumference of the plate cylinder as the pressure increasing, so that the specifications of the blanket cylinder is determined by the relationships of its shore hardness, diameter and nip pressure. When a softer blanket is used, a blanket cylinder of smaller diameter could give higher nip pressure. Realization of the true rolling technique on the MUGOP makes multilayer printing possible as well as fine printing in printed electronics.

High-Speed Monitoring Device to Inspect Inkjet Droplets with a Rotating Mirror and Its Measuring Method for Display Applications (잉크젯을 이용한 디스플레이 생산을 위한 회전 미러 방식의 잉크젯 액적 모니터링 장비 및 측정법 연구)

  • Shin, Dong-Youn
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.6
    • /
    • pp.525-532
    • /
    • 2017
  • The development of an inkjet-based manufacturing machine for the production of next-generation displays using organic and quantum-dot light emitting diodes at a low cost has been conducted. To employ inkjet printing in production lines of displays, the development of a high-speed inkjet-monitoring device to verify the reliable droplet jetting status from multiple nozzles is required. In this study, an inkjet monitoring device using a rotatable mirror with rotary and linear ultrasonic motors is developed in place of a conventional, linear reciprocating, motion-based inkjet monitoring device. Its performance is also demonstrated. The measurements of circular patterns with diameters of $10{\mu}m$, $30{\mu}m$, and $50{\mu}m$ are performed with the accuracies of $0.5{\pm}1.0{\mu}m$, $-1.2{\pm}0.3{\mu}m$, and $0.2{\pm}0.5{\mu}m$, respectively, within 17 sec. By optimizing the control program, the takt time can be reduced to as short as 8.6 sec.

The Performance Evaluation of the Exhaust Stack used in High Riser Public House (초고층 공동주택 국소배기용 입상덕트의 배기성능평가)

  • Kwon, Yong-Il;Kim, Ung-Yong;Shin, Hyun-Gon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.22 no.3
    • /
    • pp.60-67
    • /
    • 2014
  • Exhaust system used in toilet and cooking place of high riser public house is roof fan of two basic types : natural roof ventilator and natural/forced roof ventilator. Natural/forced roof ventilator has a motor in the rotary shaft. There are many high riser public house in Korea. These buildings were not viewed as being major contributors to exhaust pollutants producted in indoor. It was because many engineers thought that exhaust in high riser building depend on stack effect. This study investigates on stack pressure determined by exterior pressure and the difference pressure control in exhaust stack used in high riser public house. This paper focuses mainly on the effect of the time interval for power supply of motor installed in roof fan with function of natural wind velocity and of exhaust air volume of toilet. It is observed there are higher exhaust efficiency than the existing natural roof ventilator.

The Design of an Auto Tunning PI Controller using Parameter Estimation Method for the Linear BLDC Motor (선형 추진 BLDC 모터에 대한 파라미터 추정기법을 이용하는 오토튜닝(Auto Tunning) PI 제어기설계)

  • Cha, Young-Beom;Song, Do-Ho;Kim, Jin-Ae;Choi, Jung-Keyng
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.959-962
    • /
    • 2005
  • Servomotors are used as key components of automated system by performing accurate positioning, accurate speed regulation, and precise motion control in response to commands from computers and sensors. Especially linear brushless servomotors have numerous advantages over ball screws, timing belts, rack/pinion drives and friction drives compared with rotary servomotors. This paper proposes the estimation of unknown parameters from the linear brushless DC motor which is operated by sinusoidal commutation. The estimated parameters are used to tune the controller gain and disturbance observer. In order to agree with this purpose, Digital Signal Processor(TMS320F240), developed for implementation of a speed Field Oriented Control(FOC), adopted in this study. The processor playing an important role in controller has A/D converters, PWM generators, riched I/O port internally.

  • PDF

Nozzle Flow Characteristics and Simulation of Pesticide Spraying Drone (농약 살포 드론의 노즐 유동 특성 및 시뮬레이션)

  • Kang, Ki-Jun;Chang, Se-Myong;Ra, In-Ho;Kim, Sun-Woo;Kim, Heung-Tae
    • Smart Media Journal
    • /
    • v.8 no.4
    • /
    • pp.38-45
    • /
    • 2019
  • When there is a spray flow such as from a pesticide nozzle, winds affect the droplet flow of a rotary-wing drone accompanied by a strong wake, with a severe oscillation. Especially, during forwarding flights or when winds come from the side, compare to a simple hovering flight as the droplet is in the effect of aerodynamic drag force, the effect of spraying region becomes even larger. For this reason, the spraying of pesticides using drones may cause a greater risk of scattering or a difference in droplet dispersion between locations, resulting in a decrease in efficiency. Therefore, through proper numerical modeling and its applied simulation, an indication tool is required applicable for the various flight and atmospheric conditions. In this research, we completed both experiment and numerical analysis for the strong downwash from the rotor and flight velocity of the drone by comparing the probability density function of droplet distribution to build a spraying system that can improve the efficiency when spraying droplets in the pesticide spray drone.

Push-out bond strength and dentinal tubule penetration of different root canal sealers used with coated core materials

  • Sungur, Derya Deniz;Purali, Nuhan;Cosgun, Erdal;Calt, Semra
    • Restorative Dentistry and Endodontics
    • /
    • v.41 no.2
    • /
    • pp.114-120
    • /
    • 2016
  • Objectives: The aim of this study was to compare the push-out bond strength and dentinal tubule penetration of root canal sealers used with coated core materials and conventional gutta-percha. Materials and Methods: A total of 72 single-rooted human mandibular incisors were instrumented with NiTi rotary files with irrigation of 2.5% NaOCl. The smear layer was removed with 17% ethylenediaminetetraacetic acid (EDTA). Specimens were assigned into four groups according to the obturation system: Group 1, EndoRez (Ultradent Product Inc.); Group 2, Activ GP (Brasseler); Group 3, SmartSeal (DFRP Ltd. Villa Farm); Group 4, AH 26 (Dentsply de Trey)/gutta-percha (GP). For push-out bond strength measurement, two horizontal slices were obtained from each specimen (n = 20). To compare dentinal tubule penetration, remaining 32 roots assigned to 4 groups as above were obturated with 0.1% Rhodamine B labeled sealers. One horizontal slice was obtained from the middle third of each specimen (n = 8) and scanned under confocal laser scanning electron microscope. Tubule penetration area, depth, and percentage were measured. Kruskall-Wallis test was used for statistical analysis. Results: EndoRez showed significantly lower push-out bond strength than the others (p < 0.05). No significant difference was found amongst the groups in terms of percentage of sealer penetration. SmartSeal showed the least penetration than the others (p < 0.05). Conclusions: The bond strength and sealer penetration of resin-and glass ionomer-based sealers used with coated core was not superior to resin-based sealer used with conventional GP. Dentinal tubule penetration has limited effect on bond strength. The use of conventional GP with sealer seems to be sufficient in terms of push-out bond strength.

Improved dentin disinfection by combining different-geometry rotary nickel-titanium files in preparing root canals

  • Bedier, Marwa M.;Hashem, Ahmed Abdel Rahman;Hassan, Yosra M.
    • Restorative Dentistry and Endodontics
    • /
    • v.43 no.4
    • /
    • pp.46.1-46.10
    • /
    • 2018
  • Objectives: This study was to evaluate the antibacterial effect of different instrumentation and irrigation techniques using confocal laser scanning microscopy (CLSM) after root canal inoculation with Enterococcus faecalis (E. faecalis). Materials and Methods: Mesiobuccal and mesiolingual canals of extracted mandibular molars were apically enlarged up to a size 25 hand K-file, then autoclaved and inoculated with E. faecalis. The samples were randomly divided into 4 main groups according to the system of instrumentation and irrigation: an XP-endo Shaper (XPS) combined with conventional irrigation (XPS/C) or an XP-endo Finisher (XPF) (XPS/XPF), and iRaCe combined with conventional irrigation (iRaCe/C) or combined with an XPF (iRaCe/XPF). A middle-third sample was taken from each group, and then the bacterial reduction was evaluated using CLSM at a depth of $50{\mu}m$ inside the dentinal tubules. The ratio of red fluorescence (dead cells) to green-and-red fluorescence (live and dead cells) represented the percentage of bacterial reduction. The data were then statistically analyzed using the Kruskal-Wallis test for comparisons across the groups and the Dunn test was used for pairwise comparisons. Results: The instrumentation and irrigation techniques had a significant effect on bacterial reduction (p < 0.05). The iRaCe/XPF group showed the strongest effect, followed by the XPS/XPF and XPS/C group, while the iRaCe/C group had the weakest effect. Conclusions: Combining iRaCe with XPF improved its bacterial reduction effect, while combining XPS with XPF did not yield a significant improvement in its ability to reduce bacteria at a depth of $50{\mu}m$ in the dentinal tubules.