• Title/Summary/Keyword: Rotary kiln

Search Result 104, Processing Time 0.029 seconds

Design on Main Mechanism of High Throughput Device for Enhancement of Oxidation and Recover Rate (산화속도 및 회수율 향상을 위한 고효율 장치 핵심 메커니즘 설계)

  • Kim, Y.H.;Park, B.S.;Jung, J.H.;Yoon, J.S.;Hwang, J.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.473-476
    • /
    • 2008
  • In this paper, we designed the main mechanism of high throughput device for rod-cuts of spent fuel. For this, we analyzed the mechanical methods(slitting, ball mill, roller straightening) and chemical methods(muffle furnace, rotary kiln). As the results, methods of ball drop and rotary drum for concepts design were selected in the analysis step. For enhancement of oxidation rate, we devised the blades on the reactor with mesh type. Also, for enhancement of decladding rate, we designed ball size and rotation reactor with mesh type and devised the vacuum system for fission products. Mechanisms of oxidation and recovery can simultaneously handle the rod-cuts of spent fuel and independently recover. The results of mechanism design can be used for scale-up of high throughput device.

  • PDF

A Study on the Manufacture of Activated Carbon using Indonesian Coal (인도네시아 석탄을 이용한 활성탄 제조에 관한 연구)

  • Baek, Ill-Hyun;Kim, Tae-Young;Yeon, Ik-June;Lee, Jeong-Sik;Lee, Dong-Kyu
    • Applied Chemistry for Engineering
    • /
    • v.9 no.3
    • /
    • pp.419-423
    • /
    • 1998
  • Indonesian coal-based activated carbon was manufactured with steam-reaction method. Also effects of carbonization temperature and steam amount on the process yield and quality of the product were investigated at the activation temperature of $900^{\circ}C$. The rotary kiln type furnace was used for both carbonization and activation and the optimum operation conditions were carbonization temperature of $700^{\circ}C$, steam amount of 2.7g steam/g char and activation temperature of $900^{\circ}C$. At this condition, the iodine value of activated carbon was 1,010 mg/g. Methylene Blue Adsorption Number was 230mg/g and B.E.T. surface area was $1,020m^2/g$ with the hardness about 97.

  • PDF

Characteristic recovery of active carbon waste treated by microwave (Microwave에 의한 정수장 폐활성탄의 복원 특성)

  • Lee, Bum-Suk;Kim, Taik-Nam;Kim, Jong-Ock
    • The Journal of Engineering Research
    • /
    • v.4 no.1
    • /
    • pp.93-107
    • /
    • 2002
  • The active carbon waste which was used in water purification plant was investigated for the improvement of capillary after microwave treatment. The variation of surface area was measured with the various kinds and amounts of active carbon. The water vapor as the activator was verified to improve the capillary but it reacted with the water contained in waste active carbon. In contrast to the water vapor, the $CO_2$ gas improved the surface area about 10-20 % compared to as received one. The best results was observed at the intensity of 2.75 kw microwave. The more effective recovery of active carbon waste was observed at the microwave treatment compared to the rotary kiln treatment. However, the mass production is so difficult in the microwave process.

  • PDF

Incineration for Demilitarization of Waste Cyclotol (회수 Cyclotol의 비군사화를 위한 소각공정)

  • Lee, Si-Hwang;Baek, Seung-Won;Moon, Il;Park, Jung-Su;Kim, Hyoun-Soo;Oh, Min
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.545-550
    • /
    • 2016
  • Demilitarization involves the disposal and recovery of obsolete explosives or ammunition. Cyclotol has been used as a military explosive along with RDX and HMX. A limited number of processes exist for safe disposal due to their sensitivity to thermal shock. Rotary kilns are widely used for thermal decomposition in many countries due to cost effectiveness and simplicity compared with supercritical oxidation. Phase change as well as condensed phase reactions(CPRs) and gas phase reactions(GPRs) with rates described by the Arrhenius equation of cyclotol has been considered in this work. Changes in gas fraction, reaction rate and mass of explosives were predicted at 490, 505 and 575 K. A maximum temperature of 2062 K has been predicted within the reactor at an initial temperature of 575 K due to GPRs. From this research, Thermal decomposition in the rotary kiln is plausible for demilitarization.

Status of Pyrometallurgical Treatment Technology of EAF Dust (제강분진의 건식 처리기술 현황)

  • Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.27 no.2
    • /
    • pp.68-76
    • /
    • 2018
  • EAF (Electric arc furnace) dust is an important secondary resource such as zinc, lead, and iron. Recycling of EAF dust is benefit to solving disposal and environmental problems caused by the heavy metals entrained in the dust. In this study, pyrometallurgical treatment technology of EAF dust reviewed for the improvement of conventional process and development of new process. The existing technologies categorized into four groups: those by rotary kiln process, rotary hearth furnace (RHF) process, shaft type process, and reduction smelting process. The product of these processes are ZnO and Fe or slag as a waste. Their mechanisms for the production of ZnO from EAF dust were carbothermic reduction and oxidation of zinc gas with air.

A Study of Operation Performance Prediction Method for the Gasification Melting Furnace (가스화 용융로의 운전성능 예측기법에 관한 연구)

  • Lee, Min-Do;Choi, Sang-Min
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.43-49
    • /
    • 2005
  • Social interest and request about low pollution waste treatment process are growing and gasification melting method, as a new technology concept, is risen. The necessity of engineering analysis to determine design standards and operation condition is required. In this study, the objective and function of components and operation process of various gasification melting furnaces such as shaft type, fluidized bed and Rotary Kiln type gasification melting furnace are reviewed and the design standard and operation range of gasification melting furnace are determined by inspecting the change of output and operation condition with input condition change.

  • PDF

The Application of Gas-Solid Reactor Model: Consideration of Reduction reaction model (기체 고체 반응기 모형의 응용: 환원로 반응 모형 고찰)

  • Eum, Minje;Choi, Sangmin
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.79-82
    • /
    • 2012
  • The gas-solid reactor, such as rotary kiln, sintering bed, incinerator and CFB boiler, is the one of most widely used industrial reactors for contacting gases and solids. the gas-solid reactor are mainly used for drying, calcining and reducing solid materials. In the gas-solid reactor, heat is supplied to the outside of the wall or inside of the reactor. The heat transfer in gas-solid reactor encompasses all the modes of transport mechanisms, that is, conduction, convection and radiation. The chemical reactions occurring in the bed are driven by energy supplied by the heat transfer. This paper deal with the effect of heat transfer and chemical reaction in the gas-solid reactor.

  • PDF

Development of Lightweight Material Using Glass Abrasive Sludge (유리연마슬러지를 사용한 경량소재의 개발)

  • Kwon, Choon-Woo;Jung, Suk-Jo;Kim, Yung-Yub;Chu, Yong-Sik;Lee, Jong-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.757-760
    • /
    • 2005
  • In this study, glass abrasive sludge was utilized for a light weight material and graphite was used as expanding agent. The glass abrasive sludge with added expanding agent was formed into pellet by a pelletizer. When glass abrasive sludge is made as pellet, water glass is added as a binder(water : water glass = 8 : 2). The pellet was sintered at $700\~800^{\circ}C$ by rotary kiln composed of 4 segment temp. system. The absorption ratio of lightweight materials tended to increase in proportion to increasing content of graphite. The lowest value of specific gravity that was observed in this study was $1.8\%$.

  • PDF

Physical Properties of Pyrolized Oyster Shell Consisting of Porous CaO/CaCO3 and Phosphorus Removal Efficiency (CaO/CaCO3 다공체로 이루어진 활성 굴 패각의 물성 및 인 제거 효능에 관한 연구)

  • Lee, Chan-Won;Jeon, Hong-Pyo;Kwon, Hyok-Bo
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.524-528
    • /
    • 2010
  • In this study, the structure and properties of waste oyster shell and its phosphorus removal efficiency were investigated. Waste oyster shells are troublesome environmental waste in the coastal region where the oysters are produced. Waste oyster shells were pyrolyzed by bench-scale rotary kiln for its activation. It shows maximum 76% of phosphorus removal efficiency for the municipal wastewater and livestock wastewater. We found that the activated oyster shells can be used as a phosphorus removal agent with the consideration of high efficiency, easy processing, and cost effectiveness.

Standardization for $Cr^{+6}$ analysis in cement and concrete (시멘트 및 콘크리트의 크롬분석 표준화에 관한 연구)

  • Park, Nam-Kyu;Song, Hun;Chu, Yong-Sik;Lee, Jong-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.729-732
    • /
    • 2006
  • Portland cement is presently the most widely used construction material. The process of manufacture of cement consists essentially of grinding the raw materials, mixing them intimately proportions and burning in a rotary kiln at a temperature of up to about $1450^{\circ}C$. Raw materials have used limestone, clay, silica, and iron oxide and fuel have used bituminous coal. Recently, A standpoint of the recycling of material resources, the production of cement use of industrial waste and residual products. Therefore, the final product of cement were included heavy metals such as $Cr^{+6}$ and Pb. The purpose of this study is standardization for $Cr^{+6}$ analysis in cement and concrete. From the comparative study of the examination method of $Cr^{+6}$ analysis, Japan cement association standard of $Cr^{+6}$ analysis is most suitable for the real state of affairs in korea.

  • PDF