• Title/Summary/Keyword: Rotary blade

Search Result 70, Processing Time 0.029 seconds

A Study on the Wear of Rotary Blades (로타리 경운날의 마모에 관한 연구)

  • Choi, S.I.;Kim, J.H.;Lee, Y.K.
    • Journal of Biosystems Engineering
    • /
    • v.18 no.1
    • /
    • pp.15-20
    • /
    • 1993
  • Wearness has been a major failure criterion in Korean-made rotary blade. However, few studies have been conducted to improve it. In this study, the fundamental data obtained from the measurement of wearness and failure of rotary blade were analyzed to provide a guideline for the design of rotary blades. For the straight part(about 20-23 em from bolt hole) from the bolt hole to bending point of rotary blade, modifications were proposed for improvements, however, for the portion from bending point to tip was made no design recommendations because the failure behavior of that portion was difficult to analyze with the experimental data. The results are summarized as follows. 1. The current V-shape section has to be moved about 5 em toward the bending point of rotary blade. 2. The section modulus at the portion about 5-7 em distant from bolt hole has to be increased about 15-20 %. 3. The V-shape section has to be changed into U-shape to reduce the on account of recieving initial stress in blades. 4. The radius of curvature of the neck(the portion about 5-7 cm apart from bolt hole) has to be made larger to decrease the stress concentration.

  • PDF

Research on the Actual Condition of Rotary Tilling & Rotary Power Requirement in the Central Area (중부지방에서의 로터리 경운작업 실태조사 및 경운부하)

  • Myung, Byung-Su;Lee, Hyun-Dong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.12 no.2
    • /
    • pp.79-83
    • /
    • 2009
  • In this study, actual state of operation of rotary tillage was surveyed in the central part of Korea which includes 29 rural community around Asan city, Choongnam principal. 29 heads of the village and 44 farmers were surveyed at the field with a questionnaire on the operation of rotary tillage with farm tractors. Power requirement of rotary tillage operation was measured at the field of each farmers during rotary tilling operation in the central part of Korea. Summaries of this study are summarized as follows. 1) Operations of tillage and land preparation were found to be carried out with farm tractors by 98 percents which are results of the survey on 29 heads of the village and 44 farmers. 2) More than half of the farms had tractors with horsepower more than 38 kW which states that most tractors were supplied in middle and large size. 3) The case of applying secondary tillage after the first primary tillage were 79 percent among the most of operations of tillage and field preparation. Rotary tillage were carried out on the most of wet paddy fields and only 14 percent of dry fields were cultivated with rotary tillage. 4) 63.6 percent of farm tractors were surveyed to meet the recommended field capacity on tillage operation by the government which were ranged from 15.1 to 34.9 ha. And the field capacity of these farm tractors were greater than that of annual total area of operation field, 13.2ha (data from Information of agricultural machinery, National agricultural products quality service, Korea), which states the utilization of agricultural machinery was high in the area surveyed. 5) 46 percent of farmers changed the blade of rotary implement when they used it over the field capacity of rotary blade of 33 ha which is the area of field for rotary operation per a blade change. 55 percent of farmers changed the rotary blade more than once per two years. 6) The required power for rotary operation of each farm tractors were measured as 17.206 kW at untilled paddy field and 34.989 kW at untilled dry field on the average, respectively. The required power for rotary operation was measured as 28.248 kW on the average at the paddy field which had been plowed once and 28.015 at the paddy field that had rotary tillage operation. Untilled dry field showed the highest value of the required power for rotary operation.

  • PDF

Aerodynamic Analysis of Helicopter Rotor by Using a Time-Domain Panel Method

  • Kim, J.K.;Lee, S.W.;Cho, J.S.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.638-642
    • /
    • 2008
  • Computational methods based on the solution of the flow model are widely used for the analysis of lowspeed, inviscid, attached-flow problems. Most of such methods are based on the implementation of the internal Dirichlet boundary condition. In this paper, the time-domain panel method uses the piecewise constant source and doublet singularities. The present method utilizes the time-stepping loop to simulate the unsteady motion of the rotary wing blade. The wake geometry is calculated as part of the solution with no special treatment. To validate the results of aerodynamic characteristics, the typical blade was chosen such as, Caradonna-Tung blade and present results were compared with the experimental data and the other numerical results in the single blade condition and two blade condition. This isolated rotor blade model consisted of a two bladed rotor with untwisted, rectangular planform blade. Computed flow-field solutions were presented for various section of the blade in the hovering mode.

  • PDF

A Study on Rotary Weeding Blade Installation Angle for Reduction of Hand Vibration in Working Type Cultivator

  • Kwon, Tae Hyeong;Kim, Joonyong;Lee, Chungu;Kang, Tae Gyoung;Lee, Byeong-Mo;Rhee, Joong-Yong
    • Journal of Biosystems Engineering
    • /
    • v.39 no.1
    • /
    • pp.11-20
    • /
    • 2014
  • Purpose: Walking type cultivator used for weeding generated excessive handle vibration as well as bouncing motion depending on the weeding speed. This research was conducted to define a design factor of the rotary weeding blades for reducing soil reaction forces as well as hand vibration. Methods: The motion and forces acting on the rotary blades were reviewed to find out the most influencing parameter on hand vibration. The installation angle (IA) of the blade was selected and analyzed to determine the condition of no reaction force less. For removing the unnecessary upward soil reaction, the design factor theory of weeding blade was suggested based on geometrics and dynamics. For evaluation of design factor theory, the experiment in situ was performed base on ISO 5349:1. The vibration $a_{hv}$ and theoretical value $X_{MF}$ were compared with two groups that one was positive group ($X_{MF}$ > 0) and the other was negative group ($X_{MF}$ < 0). Results: $X_{MF}$ was derived from rotational velocity, forward velocity, disk diameter, weeding depth, blade's width and IA of blade. Two groups had significant difference (p < 0.05). In aspect of the group mean total exposure duration, positive group was 17.53% bigger than negative group. When disk radius 100, 150 and 200 mm, minimum IAs were $4{\sim}27^{\circ}$, $3{\sim}15^{\circ}$ and $2{\sim}10^{\circ}$, respectively. A spread sheet program which calculated XMF was developed by Excel 2013. Conclusions: According to this result, minimum IA of weeding blade for soil reaction reduction could be obtained. For reduction hand-arm vibration and power consumption, minimum IA is needed.

Effects of Edged Curve Angle of Rotary Blade on Entwining Spreaded Rice Straw in Paddy (볏짚 시용(施用) 답(畓)의 Rotary 경운시(耕耘時) 날의 궤적(軌跡) 진입각(進入角)이 볏짚 감김에 미치는 영향(影響))

  • Yi, Woon Young;Kim, Soung Rai
    • Korean Journal of Agricultural Science
    • /
    • v.13 no.1
    • /
    • pp.103-112
    • /
    • 1986
  • This study was carried out to prevent the entwining of rice straw on rotary shaft and blade where rice straw was spreaded on paddy field as an organic source before rotary tilling. The rotary tillage was conducted in the paddy field having the soil moisture contents of 30%, 39%, 59% in dry basis and spreaded rice straw (450kg/10a) of 30cm, 45cm, 90cm length with the edged curve angles of rotary blade of $30^{\circ}$, $40^{\circ}$, $50^{\circ}$, $55^{\circ}$ at Yuseung area. And the test were performed on the plot which has width of 30cm and 5cm length and the quantity of entwined rice straw was analized. The test results were summarized as the followings. 1. Entwining phenomenon of rice straw was decreased as the blade edged curve angle increased. The edged curve angle of rotary blade must be determind by considering the characteristics of soil cutting resistance, tilling torque and entwining phenomenon of rice straw. But according to the entwining phenomenon of rice straw only, the edged curve angle of rotary blade should be bigger than $55^{\circ}$ for design. 2. Amount of entwining rice straw was minimized when soil moisture contents was 30 percent (d. b.). It would be better that rotary tillage is performed when soil moisture contents is lower than 30 percent in dry basis. 3. Amount of entwining rice straw was minimized when the length of rice straw was 30cm with $55^{\circ}$ edged curve angle. Therefore, it would be better to chop rice straw as 30cm. 4. Entwining phenomenon of rice straw was decreased as the forward speed decreased. To decrease the entwining rice straw, rotary tillage should be done with forward fist gear (0.35m/s).

  • PDF

Online Strain Measurement at Multiple Points on a Rotating Blade with Fiber Bragg Grating Sensors and a Rotary Optical Coupler (광섬유 격자 센서와 회전 광학 커플러를 사용한 회전하는 블레이드 여러 지점에서의 온라인 변형률 측정)

  • Lee, Jong-Min;Hwang, Yo-Ha
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.1
    • /
    • pp.77-82
    • /
    • 2008
  • Strain-gauges have been dominantly used to measure strain at various points on a rotor, however, either a slip ring or telemetry has to be used to send sensor signals to data acquisition instruments at stationary side. Both slip ring and telemetry have numerous inherent problems which force severe limitations in real applications. This paper introduces a new rotor condition monitoring system using FBG(Fiber Bragg Grating) sensors and a rotary optical coupler. A single optical fiber with many FBG sensors is installed on the rotor and an optical dynamic interrogator is installed at stationary side. The sensor signal connection between rotating part and stationary part is made by the rotary optical coupling method which makes use of light's unique characteristic-light travels through space. Broad band light source from the interrogator travels to the optical fiber on the rotor and reflected FBG sensor signals travel back to the optical fiber on stationary side and are connected to the interrogator. Rotary optical coupler's insertion loss change due to rotation is compensated by using a reference sensor installed at the center of the rotor. The proposed system's performance has been successfully demonstrated by accurately measuring strains at 5 points on a blade rotating at high speed.

Numerical Analysis of Flow-Induced Noise and Fan Performance in Suction Nozzle of a Vacuum Cleaner with a Double-Blade Fan (이중 블레이드 팬이 장착된 진공청소기 흡입 노즐내 유로 유동 소음 및 팬 성능 해석)

  • Park, I-Sun;Sohn, Chae-Hoon;Lee, Sung-Cheol;Oh, Jang-Keun
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2632-2637
    • /
    • 2007
  • Rotary performance and flow resistance induced by each element in suction nozzle of a vacuum cleaner with a double-blade rotary fan are investigated numerically and its relation with flow-induced noise and rotary performance is examined. Flow resistance and vorticity in suction nozzle are calculated and it is found that they are closely related with flow-induced noise. Gap between double blades, adoption of cross-flow fan, enlargement of flow inlet area, and optimization of blade number are tested for noise reduction. Finally, the effects of each method are verified experimentally. It is found that several combinations of the proposed methods can be adopted for noise reduction although the degree of reduction is not much.

  • PDF

Noise Reduction of Blade Vortex Interaction Using Tip Jet Blowing

  • Yang Choongmo;Baek Jehyun;Saito Shigeru;Aoyama Takashi
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.172-174
    • /
    • 2003
  • Nnumerical investigations of the tip vortical characteristics were conducted with lateral tip blowing to reduce Blade-Vortex Interaction (BVI) noise. The predictions of BVI noise were performed using a combined method of an unsteady Euler code with an aeroacoustic code based on Ffowcs- Williams and Hawkings formulation. A moving overlapped grid system with three types of grids (blade grid, inner and outer background grid) was used to simulate BVI of helicopter with two OLS-airfoil blades in forward/ descending flight condition. The calculated waveform of BVI noise, which is characterized by the distinct peaks caused during blade vortex interaction, clearly shows the effect of lateral blowing at tip to reduce BVI noise

  • PDF

A Stress Analysis of the Rotary Blade by Freezing Photoelastic Method (동결(凍結) 광탄성법(光彈性法)에 의한 로터리 경운날의 응력해석(應力解析))

  • Choi, S.I.;Kim, J.H.
    • Journal of Biosystems Engineering
    • /
    • v.16 no.3
    • /
    • pp.211-218
    • /
    • 1991
  • In this study, the break of the rotary blade which is occured from a stress concentration of the inside of blade by the outside impulsive load, is analyzed to 3-dimension used by the Freezing Photoelastic Method. These results are as follows. 1. The bending and compression stress are the greatest at the location of blade case. 2. The section area of 3cm-location from the blade case is the smallest, therefore, there are breaked 58% of all at this location and are proofed to the most danger section 3. The section area which by stress concentration of 3cm-location from blade case is caused by the production of blade, and it was higher danger of break than another location's. 4. In the location of 6cm and 9cm from the blade case, the bending stress has received a little and the section area has larger than another's, so it is not almost possible that the break at that location 5. In order to prevent of break, the external part which has contacted soil have to made tender for receiving a little stress and the internal part which received a large stress have to strengthen.

  • PDF

The effect of the revolution and forwarding speed of the rotary blade on the tilling power requirement (로우터리 경운(耕耘)날의 회전속도(回轉速度) 및 작업속도(作業速度)가 경운소요동력(耕耘所要動力)에 미치는 영향(影響))

  • Kwon, Soon Goo;Kim, Soung Rai
    • Korean Journal of Agricultural Science
    • /
    • v.11 no.1
    • /
    • pp.160-175
    • /
    • 1984
  • This study was carried out to analyze the effects of the revolution and forwarding speed of the rotary blade and the edge curves which were $30^{\circ}$ and $40^{\circ}$, on the power requirement of rotary tillage. In this study, the revolutions of the rotary blade considered were 204, 243, 285, 360 rpm, and the forwarding speeds of the rotary system considered were 29.40cm/sec, 46.93em/sec. The power requirements of rotary blade were measured by a dynamic strain gage systems at the soil bin which was filled with artificial soil. The results of the study were summarized as follows: 1. The response surface analysis showed that the revolution and forwarding speed of the rotary shaft had an interacting influence on the torque requirement of the rotary blade. The mathematical model developed by the above was repersented as follow. $$T=a_0+a_1V+a_2R +a_3VR+a_4VR^2$$ where, $a_0=constant$ $a_1,\;a_2,\;a_3,\;a_4=coefficients$ V=forwarding speed of the rotary system. (em/sec) R=revolution of the rotary shaft. (rpm) T=tilling torque requirement. (kg-m) 2. When the maximum tilling torque requirement was analyzed, ${\partial}T/{\partial}R$ was decreased with the increasing revolution of rotary shaft, while ${\partial}T/{\partial}V$ was increased, which was minimum at 200~220 rpm. When the forwarding speeds were increased, ${\partial}T/{\partial}R$ was decreased with increasing rate. 3. When the mean tilling torque requirement was analyzed, ${\partial}T/{\partial}V$ was constant at 320~360 rpm and ${\partial}T/{\partial}R$ was decreased with increasing rate along with the increasing revolution of rotary shaft. 4. When the mean tilling torgue requirement per unit volume of soil was analyzed, ${\partial}T/{\partial}V$ was minimum at 270~300 rpm. ${\partial}T/{\partial}R$ for the forwarding speeds of 29.40cm/sec and 46.93cm/sec was same as that for 280~290 rpm. 5. Increasing the edge curves of the rotary blades, the tilling torque requirement was increased. But other studies showed that the smaller the edge curve, the more straw could be wrapped on blades which resulted in increasing torque requirements. Therefore, the edge curve of rotary blade should be considered for the future study.

  • PDF