• 제목/요약/키워드: Rotary Optical Coupler

검색결과 3건 처리시간 0.018초

광섬유격자센서와 회전광학커플러를 사용한 새로운 회전축의 토크 측정방법 (Torque Measurement of Rotating Shaft Using Fiber Bragg Grating Sensors and Rotary Optical Coupler)

  • 이종민;황요하
    • 한국소음진동공학회논문집
    • /
    • 제17권12호
    • /
    • pp.1195-1200
    • /
    • 2007
  • Torque of a rotating shaft has been mostly measured by strain gages combined with either a slip ring or telemetry. However, these methods have severe inherent problems like low S/N ratio, high cost, limited number of channels and difficult installation. In this paper, a new method using FBG(fiber bragg grating) sensors and a rotary optical coupler for online non-contact torque monitoring is suggested. FBG sensor can measure both strain and temperature, and has much batter characteristics than those of a strain gage. A rotary optical coupler is a optical connecting device between a rotating shaft and stationary side without any physical contact. It has been devised for transmitting light between a rotating optical fiber and a stationary optical fiber. The proposed method uses this rotary optical coupler to connect FBG sensors on the rotating shaft to instruments at stationary side. And a reference FBG sensor is also applied to compensate the insertion loss change of the rotary optical coupler due to rotation. Three FBG sensors have been fabricated in a single optical fiber. Two FBG sensors are attached on the shaft surface to measure torque and one sensor is installed at the shaft center to compensate the insertion loss change. The torque of a rotating shaft has been successfully measured by the suggested method proving its superior performance potential.

광섬유 격자 센서와 회전 광학 커플러를 사용한 회전하는 블레이드 여러 지점에서의 온라인 변형률 측정 (Online Strain Measurement at Multiple Points on a Rotating Blade with Fiber Bragg Grating Sensors and a Rotary Optical Coupler)

  • 이종민;황요하
    • 대한기계학회논문집A
    • /
    • 제32권1호
    • /
    • pp.77-82
    • /
    • 2008
  • Strain-gauges have been dominantly used to measure strain at various points on a rotor, however, either a slip ring or telemetry has to be used to send sensor signals to data acquisition instruments at stationary side. Both slip ring and telemetry have numerous inherent problems which force severe limitations in real applications. This paper introduces a new rotor condition monitoring system using FBG(Fiber Bragg Grating) sensors and a rotary optical coupler. A single optical fiber with many FBG sensors is installed on the rotor and an optical dynamic interrogator is installed at stationary side. The sensor signal connection between rotating part and stationary part is made by the rotary optical coupling method which makes use of light's unique characteristic-light travels through space. Broad band light source from the interrogator travels to the optical fiber on the rotor and reflected FBG sensor signals travel back to the optical fiber on stationary side and are connected to the interrogator. Rotary optical coupler's insertion loss change due to rotation is compensated by using a reference sensor installed at the center of the rotor. The proposed system's performance has been successfully demonstrated by accurately measuring strains at 5 points on a blade rotating at high speed.

다채널 광정렬 장치 로터리 스테이지 개발에 관한 연구 (A Study on the Development of the Rotary Stage for Multi-Channel Optical Alignment System)

  • 정상화;차경래
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 추계학술대회
    • /
    • pp.143-148
    • /
    • 2003
  • In recent years, as the optical Communication systems are developed, the demands of essential parts such as splitter, coupler, WDM, and AWG filter are grow rapidly. The fabrication process for them is not, however, automatic. On that reason, the automation is needed for the grow of productivity. The optical alignment and attach ment is the core process in fabrication. In this paper, the 6-axis rotary stage for multi-channel optical alignment system is developed and the dynamic characteristic of this system is studied.

  • PDF